Chat with our AI personalities
It is an increasing odd function.
If the upper limit is a function of x and the lower limit is a constant, you can differentiate an integral using the Fudamental Theorem of Calculus. For example you can integrate Integral of [1,x^2] sin(t) dt as: sin(x^2) d/dx (x^2) = sin(x^2) (2x) = 2x sin(x^2) The lower limit of integration is 1 ( a constant). The upper limit of integration is a function of x, here x^2. The function being integrated is sin(t)
the integral of ln(sin(x)) is: -x*ln|1 - e2ix| + x*ln|sin(x)| + (i/2)*(x2 + Li2(e2ix)) + C where Li2 is the second order ploylogarithmic function.
If you reflect a function across the line y=x, you will have a graph of the inverse. For trigonometric problems: y = sin(x) has the inverse x=sin(y) or y = sin-1(x)
If you actually mean "... with respect to x", and that y is equal to this function of x, then the answer is:y = x sin(x)∴ dy/dx = sin(x) + x cos(x)