Rewrite sec x as 1/cos x. Then, sec x sin x = (1/cos x)(sin x) = sin x/cos x. By definition, this is equal to tan x.
cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)
cos2 x /(1 - sin x)= (1 - sin2 x )/(1 - sin x)= (1 + sin x)(1 - sin x)/(1 - sin x)= 1 + sin x
There will be 4 possible solutions if all you are looking for is the angles, so you will need to find out which quadrant your angle is in.2sin²x = sin x **Subtract sin x from both sides.2sin²x - sin x = 0 **Then factor out sin x.sin x(2sin x - 1) = 0 **Set each equal to zero. (AB=0 is the same as A=0 OR B=0).sin x = 0 or 2sin x - 1 = 0 to 2sin x = 1 to sin x = 1/2At this point all that is left to do is find out where sin x = 0 or 1/2, which is 0, 180 for sin x = 0 or 30, 150 for sin x = 1/2.
(tan x - sin x)/(tan x sin x) = (tan x sin x)/(tan x + sin x)[sin x/cos x) - sin x]/[(sin x/cos x)sin x] =? [(sin x/cos x)sin x]/[sin x/cos x) + sin x][(sin x - sin x cos x)/cos x]/(sin2 x/cos x) =? (sin2 x/cos x)/[(sin x + sin x cos x)/cos x)(sin x - sin x cos x)/sin2 x =? sin2 x/(sin x + sin x cos x)[sin x(1 - cos x)]/sin2 x =? sin2 x/[sin x(1 + cos x)(1 - cos x)/sin x =? sin x/(1 + cos x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[(1 + cos x)(1 - cos x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - cos2 x)(1 - cos x)/sin x =? [(sin x)(1 - cos x)]/[1 - (1 - sin2 x)](1 - cos x)/sin x =? [(sin x)(1 - cos x)]/sin2 x(1 - cos x)/sin x = (1 - cos x)/sin x True
Note that an angle should always be specified - for example, 1 - cos square x. Due to the Pythagorean formula, this can be simplified as sin square x. Note that sin square x is a shortcut of (sin x) squared.
sin x times sin x. or 1/cosec2(x) or 1 - cos2(x) or tan2(x)*cos2(x) etc, etc.
2 sin2(x) + sin(x) - 1 = 0(2 sin + 1) (sin - 1) = 0Either 2 sin(x) + 1 = 02sin(x) = -1sin(x) = -0.5x = 210°, 330°or sin(x) - 1 = 0sin(x) = 1x = 90°
sin(x)*sin2(x) = 1 so sin3(x) = 1 so that sin(x) = cuberoot(1) = 1 then x = pi/2 + n*pi where n is an integer.
cos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan x
if tan x = cos x then sin x / cos x = cos x => sin x = cos x cos x => sin x = cos2 x => sin x = 1 - sin2x => sin2x + sin x - 1 = 0 Using the quadratic formula => 1. sin x = 0.61803398874989484820458683436564 => x = sin-1 (0.61803398874989484820458683436564) or => 2. sin x = -1.6180339887498948482045868343656 => x = sin-1 (-1.6180339887498948482045868343656)
Sin(x) cos(x) = 1/2 of sin(2x)
Rewrite sec x as 1/cos x. Then, sec x sin x = (1/cos x)(sin x) = sin x/cos x. By definition, this is equal to tan x.
cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)
y=sin x y=cos x cos x sin x = cos^2 x sin x = 1-sin^2 x sin x -1 + sin^2 x = 0 sin^2 x + sin x -1 = 0 Let y=sin x y^2+y-1 = 0 This equation is of form ay^2+by+c=0 a = 1 b = 1 c = -1 y=[-b+/-sqrt(b^2-4ac)]/2a] y=[-1 +/-sqrt(1^2-4(1)(-1)]/(2)(1) discriminant is b^2-4ac =5 y=[-1 +√(5)] / 2 y=[-1 -√(5)] / 2 sin x = [-1 +√(5)] / 2 x = sin^-1 [-1 +√(5)] / 2] = 0.6662394 radians x = sin^-1 [-1 -√(5)] / 2] = sin^-1 (-1.618) -- has no solution When x = 0.6662394 radians, sin x and cos x times cos x are equal.
sin-30 = (-1) x 1/(square root of 2) -sin30 = -(1/square root of 2) They are equal
cos2 x /(1 - sin x)= (1 - sin2 x )/(1 - sin x)= (1 + sin x)(1 - sin x)/(1 - sin x)= 1 + sin x