10xy3 * 8x5y3 = (10*8)*(x*x5)*(y3*y3) = 80x6y6
2
cos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan x
cot x = (cos x) / (sin x) cos (x - 180) = cos x cos 180 + sin x sin 180 = - cos x sin (x - 180) = sin x cos 180 - cos x sin 180 = - sin x cot (x - 180) = (cos (x - 180)) / (sin (x - 180)) = (- cos x) / (- sin x) = (cos x) / (sin x) = cot x
Suppose csc(x)*sin(x) = cos(x)*cot(x) + y then, ince csc(x) = 1/sin(x), and cot(x) = cos(x)/sin(x), 1 = cos(x)*cos(x)/sin(x) + y so y = 1 - cos2(x)/sin(x) = 1 - [1 - sin2(x)]/sin(x) = [sin2(x) + sin(x) - 1]/sin(x)
y3 x y3 - y (3)3 x 3(3) - 3 9 x 9 - 3 = ? 9 x 9= 81 81 - 3 = 78 I hope that solves your problem
The period of y=sin(x) is 2*pi, so sin(x) repeats every 2*pi units. sin(5x) repeats every 2*pi/5 units. In general, the period of y=sin(n*x) is 2*pi/n.
Y3
The same as the period of y = sin x. This period is equal to (2 x pi).
Trying to integrate: cos2x sin x dx Substitute y = cos x Then dy = -sin x dx So the integral becomes: -y2dy Integrating gives -1/3 y3 Substituting back: -1/3 cos3x
x6 - y6 = (x3)2 - (y3)2 = (x3 + y3) (x3 - y3) = (x + y)(x2 - xy + y2)(x - y)(x2 + xy + y2)
12x2 - 24x + 9y
x^2/y^3 = x^2*y^(-3)
no
10xy3 * 8x5y3 = (10*8)*(x*x5)*(y3*y3) = 80x6y6
I think you mustve left out the = sign, but if it's supposed to be x=-y3 I think that would be... y=-3x
The period of the function y= tan(x) is pie The periods of the functions y= cos(x) and y= sin(x) is 2pie