2 sin(x) - 3 = 0
2 sin(x) = 3
sin(x) = 1.5
No solution. The maximum value of the sine function is 1.0 .
2
No, for example if A = Pi/3. Then sin3A = sin pi = 0, but sinA = sin Pi/3 = 1/2. So for A = Pi/3, the sum is 1/2, not zero. It can't be proved because the statement is false. For example if A = Pi/3. Then sin3A = sin pi = 0, but sinA = sin Pi/3 = 1/2. So for A = Pi/3, the sum is 1/2, not zero.
1.5
1/2 , 3/2
2x - 4x + 3 = 0 -2x + 3 = 0 2x = 3 x = 3/2 = 1.5
I think you mean to solve:(-2 cos23x) - (3 sin 3x) = 0cos2 x + sin2 x = 1⇒ cos2x = 1 - sin2 x⇒ -2 cos2 3x - 3 sin 3x = -2(1 - sin2 3x) - 3 sin 3x = 0⇒ 2 sin2 3x - 3 sin 3x - 2 = 0⇒ (2 sin 3x + 1)(sin 3x - 2) = 0⇒ sin 3x = -1/2 or 2sin 3x = 2 is impossible as the range of sine is -1 ≤ sine ≤ 1Thus:sin 3x = -1/2⇒ 3x = 2nπ - π/6 or 2nπ - 5π/6⇒ x = 2/3nπ -π/18 or 2/3nπ -5π/18
sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)
The angle can be 0, pi/2, pi, 3*pi/2 or 2*pi radians.
Sin(3pi/2) = Sin(2pi - pi/2) Double angle Trig. Identity. Hence Sin(2pi)Cos(pi/2) - Cos(2pi) Sin(pi/2) Sin(2pi) = 0 Cos(pi/2) = 0 Cos(2pi) = 1 Sin(pi/2) = 1 Substituting 0 x 0 - 1 x 1 = 0 - 1 = -1 The answer!!!!!
Sin(2x) + Sin(x) = 0 2Sin(x)Cos(x) + Sin(x) = 0 Factor 'Sin*(x)' Sin(x) (2Cos(x) + 1 = 0 Hence Sin(x) = 0 x = 0 , 180(pi) , 360(2pi) et.seq., & 2Cos(x) = -1 Cos(x) = -1/2 = -0.5 x = 120, 150, 480, et.seq.,
2
here for least value X=2,y=3hence 2(3)-3(2)=0=0
You cannot prove that sqrt(3)/2 = 0 because it is simply not true! The solution to the equation is theta (or, tita as you like to call it) = pi/6c or 30 degrees. The cosine of that angle is sqrt(3)/2 but that is NOT the same as it being 0.
No, for example if A = Pi/3. Then sin3A = sin pi = 0, but sinA = sin Pi/3 = 1/2. So for A = Pi/3, the sum is 1/2, not zero. It can't be proved because the statement is false. For example if A = Pi/3. Then sin3A = sin pi = 0, but sinA = sin Pi/3 = 1/2. So for A = Pi/3, the sum is 1/2, not zero.
To simplify the expression sin(30°) cos(90°) sin(90°) cos(30°), we first evaluate the trigonometric functions at the given angles. sin(30°) = 1/2, cos(90°) = 0, sin(90°) = 1, and cos(30°) = √3/2. Substituting these values into the expression, we get (1/2) * 0 * 1 * (√3/2) = 0. Therefore, the final result of sin(30°) cos(90°) sin(90°) cos(30°) is 0.
4 sin(x) - 3 = 0 Therefore sin(x) = 3/4 And so the primary solution is x = sin-1(3/4) = 49 deg The second solution in the domain is 180 - 49 = 131 deg.
(0, -3), (2, 0), (4 ,3)