Yes, the product of two polynomials will always be a polynomial. This is because when you multiply two polynomials, you are essentially combining like terms and following the rules of polynomial multiplication, which results in a new polynomial with coefficients that are the products of the corresponding terms in the original polynomials. Therefore, the product of two polynomials will always be a polynomial.
The property that states the difference of two polynomials is always a polynomial is known as the closure property of polynomials. This property indicates that when you subtract one polynomial from another, the result remains within the set of polynomials. This is because polynomial operations (addition, subtraction, and multiplication) preserve the degree and structure of polynomials. Thus, the difference of any two polynomials will also be a polynomial.
The property of polynomial subtraction that ensures the difference of two polynomials is always a polynomial is known as closure under subtraction. This property states that if you take any two polynomials, their difference will also yield a polynomial. This is because subtracting polynomials involves combining like terms, which results in a polynomial expression that adheres to the same structure as the original polynomials.
Yes, polynomials are closed under the operations of addition, subtraction, and multiplication. This means that when you add, subtract, or multiply two polynomials, the result is always another polynomial. For example, if ( p(x) ) and ( q(x) ) are polynomials, then ( p(x) + q(x) ), ( p(x) - q(x) ), and ( p(x) \cdot q(x) ) are all polynomials as well. However, polynomials are not closed under division, as dividing one polynomial by another can result in a non-polynomial expression.
A prime polynomial is a polynomial that cannot be factored into the product of two non-constant polynomials over its coefficient field. In other words, it has no divisors other than itself and the unit (constant) polynomials. For example, in the field of real numbers, (x^2 + 1) is a prime polynomial because it cannot be factored into real linear factors. Conversely, polynomials like (x^2 - 1) are not prime because they can be factored as ((x - 1)(x + 1)).
Yes. If you add, subtract or multiply (but not if you divide) any two polynomials, you will get a polynomial.
Yes. A polynomial multiplying by a polynomial will always have a multi-termed product. Hope this helps!
Clouser
That property is called CLOSURE.
The sum of two polynomials is always a polynomial. Therefore, it follows that the sum of more than two polynomials is also a polynomial.
The property that states the difference of two polynomials is always a polynomial is known as the closure property of polynomials. This property indicates that when you subtract one polynomial from another, the result remains within the set of polynomials. This is because polynomial operations (addition, subtraction, and multiplication) preserve the degree and structure of polynomials. Thus, the difference of any two polynomials will also be a polynomial.
No. Even if the answer is zero, zero is still a polynomial.
The property of polynomial subtraction that ensures the difference of two polynomials is always a polynomial is known as closure under subtraction. This property states that if you take any two polynomials, their difference will also yield a polynomial. This is because subtracting polynomials involves combining like terms, which results in a polynomial expression that adheres to the same structure as the original polynomials.
prime
It is called the property of "closure".
Closure
(b+8)(b+8)
Division of one polynomial by another one.