Difficult to tell when you cannot use parentheses.
a*(b+c) or a(b+c) = ab + ac
This is known as the distributive property of multiplication over addition.
associative property
between A and B
If AC plus CB equals AB and AC is equal to CB, then point C is the midpoint of segment AB. This means that point C divides the segment AB into two equal parts, making AC equal to CB. Therefore, point C is located exactly halfway between points A and B.
There are some missing terms. First of all, I assume that A, B, and C are collinear and that B is between A and C.If this is true then AC-AB=BC by the whole is the sum of its parts theorem.24-20=4Otherwise, all that can be said about BC is that it's length is between AC-AB = 4 and AC+AB = 44 units.
If 2 segments have the same length they are known as 'congruent segments' IE: segment AB=segment AC (or AB=AC) then AB @ AC (or AB is congruent to AC)
yes because ab plus bc is ac
the midpoint of AB.
associative property
If point C is between points A and B, then the segment AC plus the segment CB equals the total distance AB. In other words, AC + CB = AB. Therefore, if we denote the distances as AC and CB, the equation simplifies to AC + CB = AB.
between A and B
AB plus BC equals AC is an example of the Segment Addition Postulate in geometry. This postulate states that if point B lies on line segment AC, then the sum of the lengths of segments AB and BC is equal to the length of segment AC. It illustrates the relationship between points and segments on a line.
If AC equals 6 and BD equals 4, then AB equals 5.
If AC plus CB equals AB and AC is equal to CB, then point C is the midpoint of segment AB. This means that point C divides the segment AB into two equal parts, making AC equal to CB. Therefore, point C is located exactly halfway between points A and B.
If point C is between points A and B, then the distance AC plus the distance CB equals the distance AB. This can be expressed mathematically as AC + CB = AB. It illustrates the segment addition postulate in geometry, which states that the sum of the lengths of segments on a line equals the length of the entire segment.
If point b is in between points a and c, then ab +bc= ac by the segment addition postulate...dont know if that was what you were looking for... but that is how i percieved that qustion.
Do you mean F = abc + abc + ac + bc + abc' ? *x+x = x F = abc + ac + bc + abc' *Rearranging F = abc + abc' + ab + bc *Factoring out ab F = ab(c+c') + ab + bc *x+x' = 1 F = ab + ab + bc *x+x = x F = bc
8line2