between A and B
If AC plus CB equals AB and AC is equal to CB, then point C is the midpoint of segment AB. This means that point C divides the segment AB into two equal parts, making AC equal to CB. Therefore, point C is located exactly halfway between points A and B.
associative property
Difficult to tell when you cannot use parentheses. a*(b+c) or a(b+c) = ab + ac This is known as the distributive property of multiplication over addition.
(a + b)(b + c)
There are some missing terms. First of all, I assume that A, B, and C are collinear and that B is between A and C.If this is true then AC-AB=BC by the whole is the sum of its parts theorem.24-20=4Otherwise, all that can be said about BC is that it's length is between AC-AB = 4 and AC+AB = 44 units.
the midpoint of AB.
yes because ab plus bc is ac
If AC plus CB equals AB and AC is equal to CB, then point C is the midpoint of segment AB. This means that point C divides the segment AB into two equal parts, making AC equal to CB. Therefore, point C is located exactly halfway between points A and B.
associative property
AB plus BC equals AC is an example of the Segment Addition Postulate in geometry. This postulate states that if point B lies on line segment AC, then the sum of the lengths of segments AB and BC is equal to the length of segment AC. It illustrates the relationship between points and segments on a line.
If point b is in between points a and c, then ab +bc= ac by the segment addition postulate...dont know if that was what you were looking for... but that is how i percieved that qustion.
C is not on the line AB.
the midpoint of
Difficult to tell when you cannot use parentheses. a*(b+c) or a(b+c) = ab + ac This is known as the distributive property of multiplication over addition.
If AC equals 6 and BD equals 4, then AB equals 5.
14
ac + cb = ab = 9 2x - 1 + 3x = 9 5x -1 = 9 So 5x = 10 Thereby x =2. Also ac = 3 and cb = 6