An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.
The answer depends on what the factors will be. For example, every quadratic can be factored if you allow complex numbers. If not, then it helps to use the discriminant. If it is positive, there are two real factors or solutions. If that positive number is a perfect square, then the factors are rational numbers. If not, they are real but not rational (irrational). If the discriminant is 0, there is one real solution. Lastly, if it is negative, there are no real solutions.
It has one real solution.
No. A quadratic may have two identical real solutions, two different real solutions, ortwo conjugate complex solutions (including pure imaginary).It can't have one real and one complex or imaginary solution.
Suppose the quadratic equation is ax^2 + bx + c = 0 and D = b^2 - 4ac is the discriminant. Then the solutions to the quadratic equation are [-b ± sqrt(d)]/(2a). Since D = 0, the both solutions are equal to -b/(2a), a single real solution.
Yes - except in extreme cases. It can be the whole of the Real Numbers: eg x2 > -3 It can be a single point eg x2 ≤ 0 gives x = 0
Is it possible for a quadratic equation to have no real solution? please give an example and explain. Thank you
An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.
yes
The answer depends on what the factors will be. For example, every quadratic can be factored if you allow complex numbers. If not, then it helps to use the discriminant. If it is positive, there are two real factors or solutions. If that positive number is a perfect square, then the factors are rational numbers. If not, they are real but not rational (irrational). If the discriminant is 0, there is one real solution. Lastly, if it is negative, there are no real solutions.
If a quadratic function is 0 for any value of the variable, then that value is a solution.
For solving a quadratic, you mean? Well, if you have real solutions you know that your quadratic has real numbers that make f(x) equal 0. For example, the quadratic f(x) = x^2 - x - 6 has -2 and 3 for solutions, because if you put in either of those two numbers for x, you get 0.I don't know how far along in your math career you are, but there aren't really any quadratics with no solutions, just with no real solutions. Some quadratics require you to take the square root of a negative number to get a solution, which is acceptable, it's just not a real solution anymore.
b^2 - 4ac, the discriminant will tell you that a quadratic equation may have one real solution( discriminant = 0 ) , two real solutions( discriminant > 0 ), or no real solutions( discriminant < 0 ).
Since it is an inequality, there is no way to solve for x. It equals all real numbers.
The domain is all real numbers, and the range is nonnegative real numbers (y ≥ 0).
It has one real solution.
x2 ≥ 0 is one possible answer.