To find the nth term in this pattern, we first need to identify the pattern itself. The differences between consecutive terms are 7, 9, and 11 respectively. This indicates that the pattern is increasing by 2 each time. Therefore, the nth term can be found using the formula: nth term = 5 + 2(n-1), where n represents the position of the term in the sequence.
To find the nth term in a sequence, we first need to identify the pattern or formula that describes the sequence. In this case, the sequence appears to be decreasing by 4, then decreasing by 6, and finally decreasing by 10. This suggests a quadratic pattern, where the nth term can be represented as a quadratic function of n. To find the specific nth term for this sequence, we would need more data points or information about the pattern.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
The nth term is (2n - 12).
Well, honey, looks like we've got ourselves an arithmetic sequence here with a common difference of 7. So, to find the nth term, we use the formula a_n = a_1 + (n-1)d. Plug in the values a_1 = 12, d = 7, and n to get the nth term. Math doesn't have to be a drag, darling!
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
There is no pattern
To find the nth term in a sequence, we first need to identify the pattern or formula that describes the sequence. In this case, the sequence appears to be decreasing by 4, then decreasing by 6, and finally decreasing by 10. This suggests a quadratic pattern, where the nth term can be represented as a quadratic function of n. To find the specific nth term for this sequence, we would need more data points or information about the pattern.
The nth term is equal to 4n.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
It is: nth term = 7n-9
If you mean: 6 12 18 24 then the nth term is 6n
The nth term is (2n - 12).
Well, honey, looks like we've got ourselves an arithmetic sequence here with a common difference of 7. So, to find the nth term, we use the formula a_n = a_1 + (n-1)d. Plug in the values a_1 = 12, d = 7, and n to get the nth term. Math doesn't have to be a drag, darling!
For {12, 15, 18} each term is the previous term plus 3; a general formula for the nth term is given by t(n) = 3n + 9. For {12, 24, 36} each term is the previous term plus 12; a general formula for the nth term is given by t(n) = 12n.
If you meant: 2 12 22 32 then the nth term = 10n-8
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).