To find the nth term in this pattern, we first need to identify the pattern itself. The differences between consecutive terms are 7, 9, and 11 respectively. This indicates that the pattern is increasing by 2 each time. Therefore, the nth term can be found using the formula: nth term = 5 + 2(n-1), where n represents the position of the term in the sequence.
The nth term is -4n+102. Method: To find the nth term (Tn) of the sequence, multiply n by the pattern of change in the sequence from left to right (-4). Then, substitute n for a term, for example, term 2. Follow the first step (-4n) which will give -8. Then you add or subtract to equal the number of that term (94). -8+x=94. x=102. Therefore, the formula for the nth term is -4n+102. To prove it, try with any term. Term 3 (the number is 90). 3 x -4 = -12 -12 + 102 = 90 Tada!
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
Well, honey, looks like we've got ourselves an arithmetic sequence here with a common difference of 7. So, to find the nth term, we use the formula a_n = a_1 + (n-1)d. Plug in the values a_1 = 12, d = 7, and n to get the nth term. Math doesn't have to be a drag, darling!
The nth term is (2n - 12).
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.
The nth term is -4n+102. Method: To find the nth term (Tn) of the sequence, multiply n by the pattern of change in the sequence from left to right (-4). Then, substitute n for a term, for example, term 2. Follow the first step (-4n) which will give -8. Then you add or subtract to equal the number of that term (94). -8+x=94. x=102. Therefore, the formula for the nth term is -4n+102. To prove it, try with any term. Term 3 (the number is 90). 3 x -4 = -12 -12 + 102 = 90 Tada!
There is no pattern
The nth term is equal to 4n.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
The given sequence is 12, 20, 28, 36, 44. To find the nth term, observe that the difference between consecutive terms is consistently 8. Therefore, we can express the nth term as ( a_n = 12 + 8(n - 1) ), which simplifies to ( a_n = 8n + 4 ). Thus, the nth term of the sequence is ( a_n = 8n + 4 ).
Well, honey, looks like we've got ourselves an arithmetic sequence here with a common difference of 7. So, to find the nth term, we use the formula a_n = a_1 + (n-1)d. Plug in the values a_1 = 12, d = 7, and n to get the nth term. Math doesn't have to be a drag, darling!
If you mean: 6 12 18 24 then the nth term is 6n
It is: nth term = 7n-9
The nth term is (2n - 12).
For {12, 15, 18} each term is the previous term plus 3; a general formula for the nth term is given by t(n) = 3n + 9. For {12, 24, 36} each term is the previous term plus 12; a general formula for the nth term is given by t(n) = 12n.
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).