To find the nth term in this pattern, we first need to identify the pattern itself. The differences between consecutive terms are 7, 9, and 11 respectively. This indicates that the pattern is increasing by 2 each time. Therefore, the nth term can be found using the formula: nth term = 5 + 2(n-1), where n represents the position of the term in the sequence.
Oh, dude, finding the nth term is like finding a needle in a haystack, but with numbers. So, if you look closely at this pattern, you'll notice that the difference between consecutive terms is increasing by 2 each time. It's like a math puzzle, but with less fun and more numbers. So, the nth term can be calculated by the formula n^2 + 4.
To find the nth term in a sequence, we first need to identify the pattern or formula that describes the sequence. In this case, the sequence appears to be decreasing by 4, then decreasing by 6, and finally decreasing by 10. This suggests a quadratic pattern, where the nth term can be represented as a quadratic function of n. To find the specific nth term for this sequence, we would need more data points or information about the pattern.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
The nth term is (2n - 12).
Expressed in terms of n, the nth term is equal to 7n - 2.
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
There is no pattern
To find the nth term in a sequence, we first need to identify the pattern or formula that describes the sequence. In this case, the sequence appears to be decreasing by 4, then decreasing by 6, and finally decreasing by 10. This suggests a quadratic pattern, where the nth term can be represented as a quadratic function of n. To find the specific nth term for this sequence, we would need more data points or information about the pattern.
To find the nth term of a sequence, we first need to identify the pattern or rule that governs the sequence. In this case, the sequence is decreasing by 6 each time. Therefore, the nth term can be represented by the formula: 18 - 6(n-1), where n is the position of the term in the sequence.
The nth term is equal to 4n.
The nth term is (2n - 12).
It is: nth term = 7n-9
If you mean: 6 12 18 24 then the nth term is 6n
For {12, 15, 18} each term is the previous term plus 3; a general formula for the nth term is given by t(n) = 3n + 9. For {12, 24, 36} each term is the previous term plus 12; a general formula for the nth term is given by t(n) = 12n.
Expressed in terms of n, the nth term is equal to 7n - 2.
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
If you meant: 2 12 22 32 then the nth term = 10n-8
The nth term of the sequence is expressed by the formula 8n - 4.