answersLogoWhite

0

The answer will be the diagonal (hypotenuse) for a horizontal distance x2-x1 (12) and a vertical distance y2-y1 (-16). The square root of the squares is sqrt [122 + (-16)2] = sqrt [144 + 256] = sq rt [400] = 20.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: Find the distance between the points -4 15 and 8 -1?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

Find the distance between the points A 9 3 and B 15 11?

10


What is the distance between (15 -17) and (-7 -17) in the coordinate?

The distance works out as 22 between the points of (15, -17) and (-7, -17)


What is the distance between the points (-7 -13) and (8 -5)?

To find the distance between two points (x0, y0) and (x1, y1) use Pythagoras: distance = √(change_in_x² + change_in_y²) → distance = √((x1 - x0)² + (y1 - y0)²) → distance = √((8 - -7)² + (-5 - -13)²) → distance = √(15² + 8²) → distance = √289 → distance = 17 units.


Explain how to find the distance between the points (28-17) and (-15-17) on a coordinate plane?

the first point is x = 28 and y = -17. The second point is x = -15 and y = -17. Since both points have the same y coordinate then the points are on a straight horizontal line and distance is the difference of the x coordinates, or 28 - (-15) = 43


Explain how to find the distance between the points (28 -17) and (-15-17) on a coordinate plane?

To find the distance between any two points on the Cartesian plane use Pythagoras: The distance between (x0, y0) and (x1, y1) is given by: distance = √((x1 - x0)² + (y1 - y0)²) → distance between (28, -17) and (-15, -17) is: distance = √((x1 - x0)² + (y1 - y0)²) = √((-15 - 28)² + (-17 - -17)²) = √((-43)² + (0)) = √1849 = 43 ------------------------ In this case, the y-coordinates are the same (y0 = y1 = -17), so this becomes: distance = √((x1 - x0)² + (y0 - y0)²) = √((x1 - x0)² + 0²) = √((x1 - x0)²) = |x1 - x0| The vertical bars around the expression mean the absolute value of the expression, which is the numerical value of the expression ignoring the sign. distance = |x1 - x0| = |-15 - 28| = |-43| = 43.