For a general polynominal, the cubic, quartic, and greater formulæ are too hellishly hard to work with, so you would need to plot the function or use Newton's/somesuch method to count the real roots by hand. If the polynomial has integral roots, you can use synthetic division to peel off the degrees to see if they factor wholely into binominals; then all roots will be real and explicit. Good luck:
Chat with our AI personalities
A third degree polynomial could have one or three real roots.
Yes.
The similarities are that they are polynomial functions and therefore continuous and differentiable.A real cubic will has an odd number of roots (and so must have a solution), a quartic has an even number of roots and so may have no solutions.
If "a" is positive, it will have two fourth roots, one will be positive and one will be negative it will have one fifth root, which will be positive. If "a" is negative, it will have one fourth root, which will be negative. it will have one fifth root, which will be negative.
3y2-5xyz yay i figured it out!!!!