For a general polynominal, the cubic, quartic, and greater formulæ are too hellishly hard to work with, so you would need to plot the function or use Newton's/somesuch method to count the real roots by hand. If the polynomial has integral roots, you can use synthetic division to peel off the degrees to see if they factor wholely into binominals; then all roots will be real and explicit. Good luck:
A third degree polynomial could have one or three real roots.
Yes.
The similarities are that they are polynomial functions and therefore continuous and differentiable.A real cubic will has an odd number of roots (and so must have a solution), a quartic has an even number of roots and so may have no solutions.
If "a" is positive, it will have two fourth roots, one will be positive and one will be negative it will have one fifth root, which will be positive. If "a" is negative, it will have one fourth root, which will be negative. it will have one fifth root, which will be negative.
3y2-5xyz yay i figured it out!!!!
Sort of... but not entirely. Assuming the polynomial's coefficients are real, the polynomial either has as many real roots as its degree, or an even number less. Thus, a polynomial of degree 4 can have 4, 2, or 0 real roots; while a polynomial of degree 5 has either 5, 3, or 1 real roots. So, polynomial of odd degree (with real coefficients) will always have at least one real root. For a polynomial of even degree, this is not guaranteed. (In case you are interested about the reason for the rule stated above: this is related to the fact that any complex roots in such a polynomial occur in conjugate pairs; for example: if 5 + 2i is a root, then 5 - 2i is also a root.)
In the complex field, a polynomial of degree n (the highest power of the variable) has n roots. Some of these roots may be multiple roots. However, if the domain is the real numbers (or a subset) then there is no easy way. The degree only gives the maximum number of roots - there may be no real root. For example x2 + 1 = 0.
In answering this question it is important that the roots are counted along with their multiplicity. Thus a double root is counted as two roots, and so on. The degree of a polynomial is exactly the same as the number of roots that it has in the complex field. If the polynomial has real coefficients, then a polynomial with an odd degree has an odd number of roots up to the degree, while a polynomial of even degree has an even number of roots up to the degree. The difference between the degree and the number of roots is the number of complex roots which come as complex conjugate pairs.
A third degree polynomial could have one or three real roots.
Descartes' rule of signs (see related link) can help you determine the maximum number of real roots. If the polynomial is odd powered, then there will be at least one real root. Any even powered polynomial can be factored into a bunch of quadratics [though they may not be rational or even pretty], and any odd-powered polynomial can be factored into a bunch of quadratics and one linear (this one would have the real root). So the quadratics may have pairs of real or complex roots (having an imaginary component).To clarify, when I say complex, I'm referring to the fact that there will be an imaginary component to the root, because actually the real numbers is a subset of the set of complex numbers.The order of the polynomial will tell you how many roots it will have. If you can graph the polynomial, then you can see if it crosses the x axis. If it is a 5th order polynomial, and crosses the x axis 3 times, then there are 3 real roots (the other two roots are complex).
Such an equation has a total of six roots; the number of real roots must needs be even. Thus, depending on the specific equation, the number of real roots may be zero, two, four, or six.
The real roots of what, exactly? If you mean a square trinomial, then: If the discriminant is positive, the polynomial has two real roots. If the discriminant is zero, the polynomial has one (double) real root. If the discriminant is negative, the polynomial has two complex roots (and of course no real roots). The discriminant is the term under the square root in the quadratic equation, in other words, b2 - 4ac.
No. Complex zeros always come in conjugate pairs. So if a+bi is one zero, then a-bi is also a zero.The fundamental theorem of algebra says"Every polynomial equation of degree n with complex coefficients has n roots in the complex numbers."If you want to know how many complex root a given polynomial has, you might consider finding out how many real roots it has. This can be done with Descartes Rules of signsThe maximum number of positive real roots can be found by counting the number of sign changes in f(x). The actual number of positive real roots may be the maximum, or the maximum decreased by a multiple of two.The maximum number of negative real roots can be found by counting the number of sign changes in f(-x). The actual number of negative real roots may be the maximum, or the maximum decreased by a multiple of two.Complex roots always come in pairs. That's why the number of positive or number of negative roots must decrease by two. Using the two rules for positive and negative signs along with the fact that complex roots come in pairs, you can determine the number of complex roots.
They can be either. If they are roots of a real polynomial then purely imaginary would be symmetric and only real roots can be skew symmetric.
Upto 4. If the coefficients are all real, then it can have only 0, 2 or 4 real roots.
A real root is when a quadratic equation, or the graph of a polynomial, crosses the x axis, or when the y coordinate is equal to 0. On any polynomial to the degree of two, when graphed the line follows a smooth arc in the shape of a "U" or and upside down "U". Since there are only two prongs to the parabola, or arc, it can only cross the x axis twice, if at all. So there can only be 2 real roots.
You forgot to copy the polynomial. However, the Fundamental Theorem of Algebra states that every polynomial has at least one root, if complex roots are allowed. If a polynomial has only real coefficients, and it it of odd degree, it will also have at least one real solution.