The integral of esec(x) dx is not a function that may be expressed in terms of well-studied mathematical functions, elementary or nonelementary. In general, it must be evaluated by numerical methods.
This integral cannot be performed analytically. Ony when the integral is taken from 0 to infinity can it be computed by squaring the integral and applying a change of variable (switching to polar coordinates). if desired I could show how to do this.
The exponential function is e to the power x, where "x" is the variable, and "e" is approximately 2.718. (Instead of "e", some other number, greater than 1, may also be used - this might still be considered "an" exponential function.) The logarithmic function is the inverse function (the inverse of the exponential function).The exponential function, is the power function. In its simplest form, m^x is 1 (NOT x) multiplied by m x times. That is m^x = m*m*m*...*m where there are x lots of m.m is the base and x is the exponent (or power or index). The laws of indices allow the definition to be extended to negative, rational, irrational and even complex values for both m and x.There is a special value of m, the Euler number, e, which is a transcendental number which is approx 2.71828... [e is to calculus what pi is to geometry]. Although all functions of the form y = m^x are exponential functions, "the" exponential function is y = e^x.Finally, if y = e^x then x = ln(y): so x is the natural logarithm of y to the base e. As with the exponential functions, the logarithmic function function can have any positive base, but e and 10 are the commonly used one. Log(x), without any qualifying feature, is used to represent log to the base 10 while logx where is a suffixed number, is log to the base b.
-e^(-x) or negative e to the negative x this is because you multiply the function (e) by: 1 / (the derivative of the power ... in this case: -1) e^(-x) * (1/-1) = -e^(-x) Don't forget to add your constant!
anything to the power of 0 is 1 except for 0. 0^0 is an indeterminate form. one way to demonstrate this is x^a/x^a = x^(a-a) which can be rewritten as 1=x^0. since e is not 0 e^0=1. this only works to numbers not infinity.
e^x/1-e^x
int[e(2X) +e(- 2X)] integrate term by term 1/22 e(2X) - 1/22 e(- 2X) + C (1/4)e(2X) - (1/4)e(- 2X) + C ====================
e-2x^2 cannot be integrated, only approximated unless there is an additional x attached to the front of the e, otherwise this function is not integrable Actually, it can be integrated, but it requires multivariable calculus and a conversion from cartesian to polar form to do so.
The integral of esec(x) dx is not a function that may be expressed in terms of well-studied mathematical functions, elementary or nonelementary. In general, it must be evaluated by numerical methods.
To integrate e^(-2x)dx, you need to take a u substitution. u=-2x du=-2dx Since the original integral does not have a -2 in it, you need to divide to get the dx alone. -(1/2)du=dx Since the integral of e^x is still e^x, you get: y = -(1/2)e^(-2x) Well, that was one method. I usually solve easier functions like this by thinking how the function looked like before it was differentiated. I let f(x) stand for the given function and F(x) stand for the primitive function; the function we had before differentiation (the integrated function). f(x)= e-2x <-- our given function F(x)= e-2x/-2 <-- our integrated function Evidence: F'(x)= -2e-2x/-2 = e-2x = f(x) Q.E.D It's as simple as that.
-ion. Drop the e, and integrate becomes integration.
2x
e 2x = (1/2) e 2x + C ============
{xe^x dx integrate by parts let f(x) = x so f'(x) = 1 and g(x) = e^x so g'(x) = e^x so.. f(x)*g(x) - {(g(x)*f'(x)) dx therefore xe^x - {(e^x * 1) dx so.. xe^x - e^x + C factorize so... (x-1)e^x + C
Use integration by parts. integral of xe^xdx =xe^x-integral of e^xdx. This is xe^x-e^x +C. Check by differentiating. We get x(e^x)+e^x(1)-e^x, which equals xe^x. That's it!
∫e^(-2x) dx Let u = 2x du= 2 dx dx=(1/2) du ∫e^(-2x) dx = (1/2) ∫e^-u du = (1/2) (-e^-u) = -e^-u /2 + C = -e^-(2x) / 2 + C
That's a Gaussian distribution.