11
3y2-5xyz yay i figured it out!!!!
Is sometimes possible, but not always.
92
Terms
I think something's missing, but the answer is x(6x - 13)
3y2-5xyz yay i figured it out!!!!
The Ruffini method, also known as synthetic division, is a step-by-step process for solving polynomial equations. Here is a concise explanation of the process: Write the coefficients of the polynomial equation in descending order. Identify a possible root of the polynomial equation and use synthetic division to divide the polynomial by the root. Repeat the process until the polynomial is fully factored. Use the roots obtained from the synthetic division to write the factors of the polynomial equation. Solve for the roots of the polynomial equation by setting each factor equal to zero. This method allows for the efficient solving of polynomial equations by breaking them down into simpler factors.
Is sometimes possible, but not always.
That already is a polynomial in standard form.
To factor a polynomial expression, you identify common factors among the terms and express the polynomial as a product of simpler polynomials. For example, consider the polynomial ( x^2 - 5x + 6 ); it factors into ( (x - 2)(x - 3) ). Each factor is written in descending order, starting with the highest degree term. The specific steps to factor will depend on the polynomial you are working with.
To write each factor as a polynomial in descending order, first identify the terms of the polynomial and arrange them based on the degree of each term, starting with the highest degree. For example, if you have factors like (x^2 + 3x - 5) and (2x - 1), you would express each factor individually, ensuring that the term with the highest exponent comes first. Finally, combine all terms, maintaining the descending order for clarity and consistency.
To write a polynomial function with real coefficients given the zeros 2, -4, and (1 + 3i), we must also include the conjugate of the complex zero, which is (1 - 3i). The polynomial can be expressed as (f(x) = (x - 2)(x + 4)(x - (1 + 3i))(x - (1 - 3i))). Simplifying the complex roots, we have ((x - (1 + 3i))(x - (1 - 3i)) = (x - 1)^2 + 9). Thus, the polynomial in standard form is: [ f(x) = (x - 2)(x + 4)((x - 1)^2 + 9). ] Expanding this gives the polynomial (f(x) = (x - 2)(x + 4)(x^2 - 2x + 10)), which can be further simplified to the standard form.
92
It is simple: just add any number as the next one in the sequence. It is always possible to find a polynomial of degree 5 that will fit the above points along with the additional point. If you want a polynomial of degree 4, then the next number must be -4.
Just write ANY fraction, with a polynomial in the numerator, and a polynomial in the denominator.
Terms
(x - (-3)) (x - (-5)) (x - 2), or(x + 3) (x + 5) (x - 2)You can multiply the binomials to get a polynomial of degree 3.