You can make 5 combinations of 1 number, 10 combinations of 2 numbers, 10 combinations of 3 numbers, 5 combinations of 4 numbers, and 1 combinations of 5 number. 31 in all.
There are 15 combinations.
There are 35C4 = 35*34*33*32/(4*3*2*1) = 52,360 combinations.
16
This question needs clarificatioh. There are 4 one digit number combinations, 16 two digit combinations, ... 4 raised to the n power for n digit combinations.
10 * * * * * That is just plain wrong! It depends on how many numbers in each combination but there are 1 combination of 4 numbers out of 4, 4 combinations of 3 numbers out of 4, 6 combinations of 2 numbers out of 4, 4 combinations of 1 number out of 4. A grand total of 15 (= 24-1) combinations.
14 * * * * * Wrong! There are 15. 4 combinations of 1 number, 6 combinations of 2 number, 4 combinations of 3 numbers, and 1 combination of 4 numbers.
it is hard to say there are lot of combinations belive or not * * * * * If the previous answerer thinks 15 is a lot then true. There are 1 combination of 4 numbers out of 4, 4 combinations of 3 numbers out of 4, 6 combinations of 2 numbers out of 4, 4 combinations of 1 number out of 4. A grand total of 15 (= 24-1) combinations. Not so hard to say!
You can make 5 combinations of 1 number, 10 combinations of 2 numbers, 10 combinations of 3 numbers, 5 combinations of 4 numbers, and 1 combinations of 5 number. 31 in all.
There are 15 combinations.
Oh, isn't that a happy little question? Let's see here... To find the number of combinations of 4 numbers out of 7, we can use a simple formula: 7 choose 4, which is calculated as 7! / (4! * (7-4)!). So, there are 35 unique combinations of 4 numbers that can be made from a set of 7 numbers. Isn't that just delightful?
To calculate the number of 4-number combinations possible with 16 numbers, you would use the formula for combinations, which is nCr = n! / r!(n-r)!. In this case, n = 16 (the total number of numbers) and r = 4 (the number of numbers in each combination). Plugging these values into the formula, you would calculate 16C4 = 16! / 4!(16-4)! = 1820. Therefore, there are 1820 possible 4-number combinations with 16 numbers.
There are: 36C4 = 58,905
9000
4 of them. In a combination the order of the numbers does not matter.
just intrested in the number combinations * * * * * Number of combinations = 56C6 = 56*55*54*53*52*51/(6*5*4*3*2*1) = 32,468,436
9000