p = 50q/100 = 1/2 q r = 40q/100 = 2/5 q p = (1/2)/(2/5) = (1/2)(5/2) = 5/4 r or 1 1/4 r Thus, p is 125% of r.
q + p
If p then q is represented as p -> q Negation of "if p then q" is represented as ~(p -> q)
p-q
By definition, every rational number x can be expressed as a ratio p/q where p and q are integers and q is not zero. Consider -p/q. Then by the properties of integers, -p is an integer and is the additive inverse of p. Therefore p + (-p) = 0Then p/q + (-p/q) = [p + (-p)] /q = 0/q.Also, -p/q is a ratio of two integers, with q non-zero and so -p/q is also a rational number. That is, -p/q is the additive inverse of x, expressed as a ratio.
If p = 50 of q then q is 2% of p.
Suppose the sides of the parallelogram are of lengths p and q and let p <= q.Then either 10 < p <= sqrt(120) and 120/p <= q < 12.5 or sqrt(120) <=p <= q <= 12.5
For this problem, assume q is 100. So, if p is 40 percent, that would mean 40/100 which equals .4 or 40 percent. So, 100/40 equal 2.5 or 250 percent. If p is 40 percent of q, then q is 250 percent of p.
p = 50q/100 = 1/2 q r = 40q/100 = 2/5 q p = (1/2)/(2/5) = (1/2)(5/2) = 5/4 r or 1 1/4 r Thus, p is 125% of r.
25 percent is a quarter
Suppose the value of whatever it is, is P in the first year and Q in the next. Then the percentage change is 100*(P - Q)/Q or, equivalently, 100*(P/Q - 1)
Converse: If p r then p q and q rContrapositive: If not p r then not (p q and q r) = If not p r then not p q or not q r Inverse: If not p q and q r then not p r = If not p q or not q r then not p r
The sum of p and q means (p+q). The difference of p and q means (p-q).
Not sure I can do a table here but: P True, Q True then P -> Q True P True, Q False then P -> Q False P False, Q True then P -> Q True P False, Q False then P -> Q True It is the same as not(P) OR Q
q + p
If p then q is represented as p -> q Negation of "if p then q" is represented as ~(p -> q)
p-q