integrate(x5x dx) simplifies to integrate(5x^2 dx), and using the power rule of integration, add one to the power of x and divide the term by that number. Thus, x5x dx integrated is (5/3)x^3
Chat with our AI personalities
∫[√(4x) / x] dx = ∫(2 / √x)dx = 2∫(x-1/2) dx = 2(2x1/2 + C) = 4√x + C
5/5x + c where c is the constant of intergration just differentiate the 5x to get 5 and times that by 1/5x then add c The answer above is wrong. This is simply because you cannot intergrate lnx to get 1/x. To intergrate I would recommend using intergration by parts. u=ln5x du/dx=1/x dv/dx=1 v=x uv-(intergal of)v.du/dx =xln5x-intergral of x/x intergral of x/x = x =xln5x-x+c = x(ln5x-1)+c
x-1 = 1/x ∫1/x dx = ln x + C
Simply integrate all the pieces apart, en add them up. This is allowed, because int_a^c f(x)dx = int_a^b f(x)dx + int_b^c f(x)dx for all a,b,c in dom(f).
int x ln5x dx by parts u = ln5x du = 1/5x or 5x^-1 dv = x v = 1/2x^2 uv - int v du ln5x 1/2x^2 - int 1/2x^2 5x^-1 1/2ln5x*x^2 - 1/6x^3 5x + C