answersLogoWhite

0

Its an arithmetic progression with a step of +4.

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

Is 0 1 -2 a geometric or arithmetic?

Neither.


Is the sequence 2 4 16 arithmetic or geometric?

neither


Is the sequence 3 5 7 9 geometric or arithmetic or neither?

It is arithmetic because it is going up by adding 2 to each number.


What is a geometric property?

1.The Geometric mean is less then the arithmetic mean. GEOMETRIC MEAN < ARITHMETIC MEAN 2.


Is 2 3 5 8 15 geometric or arithmetic?

Neither. It could be polynomial (of order 4 or more) or something else.


Is the sequence 2 3 5 8 12 arithmetic or geometric?

The sequence 2, 3, 5, 8, 12 is neither arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. In this sequence, there is no constant difference or ratio between consecutive terms, so it does not fit the criteria for either type of sequence.


Are the numbers 24711 arithmetic or geometric and what are the next two terms in the sequence?

The numbers 2, 4, 7, 11 are neither strictly arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. Here, the differences between terms are 2, 3, and 4, suggesting a pattern of increasing increments. Following this pattern, the next two terms would be 16 (11 + 5) and 22 (16 + 6).


What is the Mean for the following set of numbers 10 12 8 5 2?

the arithmetic mean for the set of numbers is 7.4. but the geometric mean is 6.25826929.


What are the answers for Arithmetic and Geometric Sequences gizmo?

Arithmetic : (First term)(last term)(act of terms)/2 Geometric : (first term)(total terms)+common ratio to the power of (1+2+...+(total terms-1))


What is the Relation between geometric mean and arithmetic mean?

The mean of the numbers a1, a2, a3, ..., an is equal to (a1 + a2 + a3 +... + an)/n. This number is also called the average or the arithmetic mean.The geometric mean of the positive numbers a1, a2, a3, ... an is the n-th roots of [(a1)(a2)(a3)...(an)]Given two positive numbers a and b, suppose that a< b. The arithmetic mean, m, is then equal to (1/2)(a + b), and, a, m, b is an arithmetic sequence. The geometric mean, g, is the square root of ab, and, a, g, b is a geometric sequence. For example, the arithmetic mean of 4 and 25 is 14.5 [(1/2)(4 + 25)], and arithmetic sequence is 4, 14.5, 25. The geometric mean of 4 and 25 is 10 (the square root of 100), and the geometric sequence is 4, 10, 25.It is a theorem of elementary algebra that, for any positive numbers a1, a2, a3, ..., an, the arithmetic mean is greater than or equal to the geometric mean. That is:(1/n)(a1, a2, a3, ..., an) &ge; n-th roots of [(a1)(a2)(a3)...(an)]


Is -2-6-18-54-162-468-1458 geometric or arithmetic?

It is neither. (-6) - (-2) = -4 (-18) - (-6) = -12 which is not the same as -4. Therefore it is not an arithmetic progression - which requires the difference between successive terms to be the same. Also -162/-54 = 3 -468/-162 = 2.88... recurring, and that is not the same as 3. Therefore it is not a geometric progression - which requires the ratio of terms to be the same.


How can a sequence be both arithmetic and geometric?

A sequence can be both arithmetic and geometric if it consists of constant values. For example, the sequence where every term is the same number (e.g., 2, 2, 2, 2) is arithmetic because the difference between consecutive terms is zero, and it is geometric because the ratio of consecutive terms is also one. In such cases, the sequence meets the criteria for both types, as both the common difference and the common ratio are consistent.