Its an arithmetic progression with a step of +4.
It is arithmetic because it is going up by adding 2 to each number.
1.The Geometric mean is less then the arithmetic mean. GEOMETRIC MEAN < ARITHMETIC MEAN 2.
Neither. It could be polynomial (of order 4 or more) or something else.
The sequence 2, 3, 5, 8, 12 is neither arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. In this sequence, there is no constant difference or ratio between consecutive terms, so it does not fit the criteria for either type of sequence.
the arithmetic mean for the set of numbers is 7.4. but the geometric mean is 6.25826929.
Neither.
neither
It is arithmetic because it is going up by adding 2 to each number.
1.The Geometric mean is less then the arithmetic mean. GEOMETRIC MEAN < ARITHMETIC MEAN 2.
Neither. It could be polynomial (of order 4 or more) or something else.
The sequence 2, 3, 5, 8, 12 is neither arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. In this sequence, there is no constant difference or ratio between consecutive terms, so it does not fit the criteria for either type of sequence.
The numbers 2, 4, 7, 11 are neither strictly arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. Here, the differences between terms are 2, 3, and 4, suggesting a pattern of increasing increments. Following this pattern, the next two terms would be 16 (11 + 5) and 22 (16 + 6).
the arithmetic mean for the set of numbers is 7.4. but the geometric mean is 6.25826929.
Arithmetic : (First term)(last term)(act of terms)/2 Geometric : (first term)(total terms)+common ratio to the power of (1+2+...+(total terms-1))
The mean of the numbers a1, a2, a3, ..., an is equal to (a1 + a2 + a3 +... + an)/n. This number is also called the average or the arithmetic mean.The geometric mean of the positive numbers a1, a2, a3, ... an is the n-th roots of [(a1)(a2)(a3)...(an)]Given two positive numbers a and b, suppose that a< b. The arithmetic mean, m, is then equal to (1/2)(a + b), and, a, m, b is an arithmetic sequence. The geometric mean, g, is the square root of ab, and, a, g, b is a geometric sequence. For example, the arithmetic mean of 4 and 25 is 14.5 [(1/2)(4 + 25)], and arithmetic sequence is 4, 14.5, 25. The geometric mean of 4 and 25 is 10 (the square root of 100), and the geometric sequence is 4, 10, 25.It is a theorem of elementary algebra that, for any positive numbers a1, a2, a3, ..., an, the arithmetic mean is greater than or equal to the geometric mean. That is:(1/n)(a1, a2, a3, ..., an) ≥ n-th roots of [(a1)(a2)(a3)...(an)]
It is neither. (-6) - (-2) = -4 (-18) - (-6) = -12 which is not the same as -4. Therefore it is not an arithmetic progression - which requires the difference between successive terms to be the same. Also -162/-54 = 3 -468/-162 = 2.88... recurring, and that is not the same as 3. Therefore it is not a geometric progression - which requires the ratio of terms to be the same.
A sequence can be both arithmetic and geometric if it consists of constant values. For example, the sequence where every term is the same number (e.g., 2, 2, 2, 2) is arithmetic because the difference between consecutive terms is zero, and it is geometric because the ratio of consecutive terms is also one. In such cases, the sequence meets the criteria for both types, as both the common difference and the common ratio are consistent.