Yes.
when the equation is equal to zero. . .:)
Yes, the places where the graph of a polynomial intercepts the x-axis are zeros. The value of y at those places must be 0 for the polynomial to intersect the x axis.
3. Captured zeros (zeros between two other significantnumbers) are always significant.
3y2-5xyz yay i figured it out!!!!
Multiply x3 - 2x2 - 13x - 10
A zero of the derivative will always appear between two zeroes of the polynomial. However, they do not always alternate. Sometimes two or more zeroes of the derivative will occur between two zeroes of a polynomial. This is often seen with quartic or quintic polynomials (polynomials with the highest exponent of 4th or 5th power).
No. Consider the polynomial: f(x) = x3 + 4x2 + 4x + 16 then f'(x) = 3x2 + 8x + 4 = (3x + 2)(x + 2) => x = -2/3, -2 are the zeros of f'(x) Using the second derivative: f''(x) = 6x + 8 it can be seen that: f''(-2) = -4 -> x = -2 is a maximum f''(-2/3) = +4 -> x = -2/3 is a minimum But plugging back into the original polynomial: f(-2) = 16 f(-2/3) = 14 22/27 Between the zeros of the first derivative, the slope of the polynomial is negative so that the polynomial is always decreasing in value, but as the polynomial is greater than zero at the zeros of the first derivative, it cannot become zero between them. That is it has no zeros between the zeros of its first derivative f(x) = x3 + 4x2 + 4x + 16 = (x + 4)(x2 + 4) has only 1 zero at x = -4.
A quadratic polynomial must have zeros, though they may be complex numbers.A quadratic polynomial with no real zeros is one whose discriminant b2-4ac is negative. Such a polynomial has no special name.
No. The important decider is the second derivative of the polynomial (the gradient of the gradient of the polynomial) at the zero of the first derivative: If less than zero, then the point is a maximum If more than zero, then the point in a minimum If equal to zero, then the point is a point of inflection. Consider the polynomial f(x) = x3, then f'(x) = 3x2 f'(0) = 0 -> x = 0 could be a maximum, minimum or point of inflection. f''(x) = 6x f''(0) = 0 -> x = 0 is a point of inflection Points of inflection do not necessarily have a zero gradient, unlike maxima and minima which must. Points of inflection are the zeros of the second derivative of the polynomial.
They tell you where the graph of the polynomial crosses the x-axis.Now, taking the derivative of the polynomial and setting that answer to zero tells you where the localized maximum and minimum values occur. Two values that have vast applications in almost any profession that uses statistics.
The zeros of a polynomial represent the points at which the graph crosses (or touches) the x-axis.
Yes, a polynomial can have no rational zeros while still having real zeros. This occurs, for example, in the case of a polynomial like (x^2 - 2), which has real zeros ((\sqrt{2}) and (-\sqrt{2})) but no rational zeros. According to the Rational Root Theorem, any rational root must be a factor of the constant term, and if none exist among the possible candidates, the polynomial can still have irrational real roots.
Polynomial fuction in standard form with the given zeros
x2 + 15x +36
A polynomial of degree ( n ) can have at most ( n ) real zeros. This is a consequence of the Fundamental Theorem of Algebra, which states that a polynomial of degree ( n ) has exactly ( n ) roots in the complex number system, counting multiplicities. Therefore, while all roots can be real, the maximum number of distinct real zeros a polynomial can possess is ( n ).
The values of the variables which make the polynomial equal to zero
when the equation is equal to zero. . .:)