when the equation is equal to zero. . .:)
Multiply x3 - 2x2 - 13x - 10
16a2b4
Given any number it is easy to find a rule based on a polynomial of order 5 such that the first five numbers are as listed in the question and the nth is the given number. There are also non-polynomial solutions.The simplest polynomial of smaller order is:Un = (n2 + n + 4)/2 for n = 1, 2, 3, ...
No integer roots. Quadratic formula gives 1.55 and -0.81 to the nearest hundredth.
take out zeros
by synthetic division and quadratic equation
To find the zeros of the polynomial from the given graph, identify the points where the graph intersects the x-axis. These intersection points represent the values of x for which the polynomial equals zero. If the graph crosses the x-axis at specific points, those x-values are the zeros of the polynomial. If the graph merely touches the x-axis without crossing, those points indicate repeated zeros.
Multiply x3 - 2x2 - 13x - 10
If the cubic polynomial you are given does not have an obvious factorization, then you must use synthetic division. I'm sure wikipedia can tell you all about that.
To find the quadratic polynomial whose zeros are 2 and -3, we can use the fact that a polynomial can be expressed in factored form as ( f(x) = a(x - r_1)(x - r_2) ), where ( r_1 ) and ( r_2 ) are the zeros. Here, substituting ( r_1 = 2 ) and ( r_2 = -3 ), we have ( f(x) = a(x - 2)(x + 3) ). Expanding this, we get ( f(x) = a(x^2 + x - 6) ). For simplicity, we can choose ( a = 1 ), giving us the polynomial ( f(x) = x^2 + x - 6 ).
Find All Possible Roots/Zeros Using the Rational Roots Test f(x)=x^4-81 ... If a polynomial function has integer coefficients, then every rational zero will ...
If there is one variable. Then put each variable equal to zero and then solve for the other variable.
Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.
If you have the zeros of a polynomial, it is easy, almost trivial, to find an expression with those zeros. I am not sure I understood the question correctly, but let's assume you have the zero 2 with multiplicity 2, and other zeros at 3 and 5. Just write the expression: (x-2)(x-2)(x-3)(x-5). (Example with a negative zero: if there is a zero at "-5", the factor becomes (x- -5) = (x + 5).) You can multiply this out to get the polynomial if you like. For example, if you multiply every term in the first factor with every term in the second factor, you get x2 -2x -2x + 4 = x2 -4x + 4. Next, multiply each term of this polynomial with each term of the next factor, etc.
16a2b4
To find the possible rational zeros of the polynomial ( f(x) = x^3 + 8x + 6 ), we can use the Rational Root Theorem. The possible rational zeros are given by the factors of the constant term (6) over the factors of the leading coefficient (1). Therefore, the possible rational zeros are ( \pm 1, \pm 2, \pm 3, \pm 6 ).
To determine which polynomial is equivalent to a given expression, you'll need to provide the specific expression you're referring to. Please share the expression, and I'll help you find the equivalent polynomial.