Nothing at all! It depends on the context.
p = q
The truth values.
p=q
We can not provide a specific value as an answer to this question as both p and q are variables and their value is unspecified.However we can write this as:-8(p + q).We can multiply out the bracket to get:-8p + -8q.This is as far as we can answer this question unless the values of p and q are known.-8(p + q) = -8p + -8q
This question cannot be answered correctly. You will have to give me the value of one of the letters.
p = q
Ifp < q and q < r, what is the relationship between the values p and r? ________________p
The truth values.
p=q
The values of p and q work out as -2 and 4 respectively thus complying with the given conditions.
The relational operators: ==, !=, =.p == q; // evaluates true if the value of p and q are equal, false otherwise.p != q; // evaluates true of the value of p and q are not equal, false otherwise.p < q; // evaluates true if the value of p is less than q, false otherwise.p q; // evaluates true if the value of p is greater than q, false otherwise.p >= q; // evaluates true of the value of p is greater than or equal to q, false otherwiseNote that all of these expressions can be expressed logically in terms of the less than operator alone:p == q is the same as NOT (p < q) AND NOT (q < p)p != q is the same as (p < q) OR (q < p)p < q is the same as p < q (obviously)p q is the same as (q < p)p >= q is the same as NOT (p < q)
We can not provide a specific value as an answer to this question as both p and q are variables and their value is unspecified.However we can write this as:-8(p + q).We can multiply out the bracket to get:-8p + -8q.This is as far as we can answer this question unless the values of p and q are known.-8(p + q) = -8p + -8q
2 and 3. (4 x 9 = 36)
This question cannot be answered correctly. You will have to give me the value of one of the letters.
The statement "P and Q implies not not P or R if and only if Q" can be expressed in logical terms as ( (P \land Q) \implies (\neg \neg P \lor R) \iff Q ). This can be simplified, as (\neg \neg P) is equivalent to (P), leading to ( (P \land Q) \implies (P \lor R) \iff Q ). The implication essentially states that if both (P) and (Q) are true, then either (P) or (R) must also hold true, and this equivalence holds true only if (Q) is true. The overall expression reflects a relationship between the truth values of (P), (Q), and (R).
Any ratio of the form p : q where p and q are integers whose absolute values are greater than 1.
The expression "p + 2q" represents the sum of a variable p and twice the value of another variable q. This can also be written as p + 2 * q, where the asterisk denotes multiplication. In algebraic terms, this expression cannot be simplified further unless specific values are assigned to the variables p and q.