answersLogoWhite

0

Since the vertex is at the origin and the parabola opens downward, the equation of the parabola is x2 = 4py, where p < 0, and the axis of symmetry is the y-axis. So the focus is at y-axis at (0, p) and the directrix equation is y = -p.

Now, what do you mean with 1 and 76 units? 1.76 units?

If the distance of the vertex and the focus is 1.76 units, then p = -1.76, thus 4p = -7.04, then the equation of the parabola is x2 = -7.04y.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

How do you write an equation of a parabola with vertex at the origin and the given focus 60?

To write the equation of a parabola with its vertex at the origin (0, 0) and a focus at (0, 60), you first identify the orientation of the parabola. Since the focus is above the vertex, the parabola opens upwards. The standard form of the equation for a parabola that opens upwards is ( y = \frac{1}{4p}x^2 ), where ( p ) is the distance from the vertex to the focus. Here, ( p = 60 ), so the equation becomes ( y = \frac{1}{240}x^2 ).


Which equation represents a parabola opening to the right with a vertex at the origin and a focus at (40)?

The equation that represents a parabola opening to the right with its vertex at the origin (0,0) and a focus at (4,0) is given by ( y^2 = 4px ), where ( p ) is the distance from the vertex to the focus. Since the focus is located at (4,0), ( p = 4 ). Therefore, the equation of the parabola is ( y^2 = 16x ).


How do you find the vertex of an equation in standard form?

To find the vertex of a quadratic equation in standard form, (y = ax^2 + bx + c), you can use the vertex formula. The x-coordinate of the vertex is given by (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. The vertex is then the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))).


How do you find the vertex of a parabola when the equation is in standard form?

To find the vertex of a parabola in standard form, which is given by the equation ( y = ax^2 + bx + c ), you can use the formula for the x-coordinate of the vertex: ( x = -\frac{b}{2a} ). Once you have the x-coordinate, substitute it back into the original equation to find the corresponding y-coordinate. The vertex will then be at the point ( (x, y) ).


How does an equation for a sideways parabola look like?

An equation for a sideways parabola can be expressed in the form ( y^2 = 4px ) for a parabola that opens to the right, or ( y^2 = -4px ) for one that opens to the left. Here, ( p ) represents the distance from the vertex to the focus. The vertex of the parabola is at the origin (0,0), and the axis of symmetry is horizontal. If the vertex is not at the origin, the equation can be adjusted to ( (y-k)^2 = 4p(x-h) ), where ((h, k)) is the vertex.

Related Questions

What is the standard equation of a parabola that opens up or down and whose vertex is at the origin?

focus , directrix


What is the difference between standard form and vertex form?

The difference between standard form and vertex form is the standard form gives the coefficients(a,b,c) of the different powers of x. The vertex form gives the vertex 9hk) of the parabola as part of the equation.


How do you write an equation of a parabola with vertex at the origin and the given focus 60?

To write the equation of a parabola with its vertex at the origin (0, 0) and a focus at (0, 60), you first identify the orientation of the parabola. Since the focus is above the vertex, the parabola opens upwards. The standard form of the equation for a parabola that opens upwards is ( y = \frac{1}{4p}x^2 ), where ( p ) is the distance from the vertex to the focus. Here, ( p = 60 ), so the equation becomes ( y = \frac{1}{240}x^2 ).


What is the equation of a parabola with a vertex at 0 0 and a focus at 0 6?

The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y


How do you find the vertex of an equation in standard form?

To find the vertex of a quadratic equation in standard form, (y = ax^2 + bx + c), you can use the vertex formula. The x-coordinate of the vertex is given by (x = -\frac{b}{2a}). Once you have the x-coordinate, substitute it back into the equation to find the corresponding y-coordinate. The vertex is then the point ((-\frac{b}{2a}, f(-\frac{b}{2a}))).


How do you find the vertex of a parabola when the equation is in standard form?

To find the vertex of a parabola in standard form, which is given by the equation ( y = ax^2 + bx + c ), you can use the formula for the x-coordinate of the vertex: ( x = -\frac{b}{2a} ). Once you have the x-coordinate, substitute it back into the original equation to find the corresponding y-coordinate. The vertex will then be at the point ( (x, y) ).


How does an equation for a sideways parabola look like?

An equation for a sideways parabola can be expressed in the form ( y^2 = 4px ) for a parabola that opens to the right, or ( y^2 = -4px ) for one that opens to the left. Here, ( p ) represents the distance from the vertex to the focus. The vertex of the parabola is at the origin (0,0), and the axis of symmetry is horizontal. If the vertex is not at the origin, the equation can be adjusted to ( (y-k)^2 = 4p(x-h) ), where ((h, k)) is the vertex.


What different information do you get from vertex form and quadratic equation in standard form?

The graph of a quadratic function is always a parabola. If you put the equation (or function) into vertex form, you can read off the coordinates of the vertex, and you know the shape and orientation (up/down) of the parabola.


What is the standard form of the equation of the parabola with vertex 00 and directrix y4?

Assuming the vertex is 0,0 and the directrix is y=4 x^2=0


Convert between standard and vertex form?

2


What is the equation of a parabola with vertex (0 0) and directrix x -3.?

The equation of a parabola with vertex at (0, 0) and a directrix of ( x = -3 ) opens to the right, as the directrix is a vertical line. The distance from the vertex to the directrix is 3 units. The standard form of the equation for a horizontally-opening parabola is given by ( y^2 = 4px ), where ( p ) is the distance from the vertex to the directrix. Therefore, with ( p = 3 ), the equation is ( y^2 = 12x ).


The vertex form of the equation of a parabola is y x-5 2 plus 16 what is the standard form of the equation?

In the equation y x-5 2 plus 16 the standard form of the equation is 13. You find the answer to this by finding the value of X.