answersLogoWhite

0

Weistrass function is continuous everywhere but not differentiable everywhere

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi

Add your answer:

Earn +20 pts
Q: What function is continuous everywhere but not differentiable?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What are the similarities between quadratic function and linear function?

Both are polynomials. They are continuous and are differentiable.


When was function not having a derivative at a point?

Definition: A function f is differentiable at a if f'(a) exists. it is differentiable on an open interval (a, b) [or (a, &infin;) or (-&infin;, a) or (-&infin;, &infin;)]if it is differentiable at every number in the interval.Example: Where is the function f(x) = |x| differentiable?Answer:1. f is differentiable for any x > 0 and x < 0.2. f is not differentiable at x = 0.That's mean that the curve y = |x| has not a tangent at (0, 0).Thus, both continiuty and differentiability are desirable properties for a function to have. These properties are related.Theorem: If f is differentiable at a, then f is continuous at a.The converse theorem is false, that is, there are functions that are continuous but not differentiable. (As we saw at the example above. f(x) = |x| is contionuous at 0, but is not differentiable at 0).The three ways for f not to be differentiable at aare:a) if the graph of a function f has a "corner" or a "kink" in it,b) a discontinuity,c) a vertical tangent


Is function f of x equal to modulus x differentiable?

It is; everywhere except at x = 0


Is signum function differentiable?

The signum function, also known as the sign function, is not differentiable at zero. This is because the derivative of the signum function is not defined at zero due to a sharp corner or discontinuity at that point. In mathematical terms, the signum function has a derivative of zero for all values except at zero, where it is undefined. Therefore, the signum function is not differentiable at zero.


A polynomial function is always continuous?

Yes, a polynomial function is always continuous