The signum function is differentiable with derivative 0 everywhere except at 0, where it is not differentiable in the ordinary sense.
However, but under the generalised notion of differentiation in distribution theory, the derivative of the signum function is two times the Dirac delta function or twice the unit impulse function.
Weistrass function is continuous everywhere but not differentiable everywhere
both
Definition: A function f is differentiable at a if f'(a) exists. it is differentiable on an open interval (a, b) [or (a, ∞) or (-∞, a) or (-∞, ∞)]if it is differentiable at every number in the interval.Example: Where is the function f(x) = |x| differentiable?Answer:1. f is differentiable for any x > 0 and x < 0.2. f is not differentiable at x = 0.That's mean that the curve y = |x| has not a tangent at (0, 0).Thus, both continiuty and differentiability are desirable properties for a function to have. These properties are related.Theorem: If f is differentiable at a, then f is continuous at a.The converse theorem is false, that is, there are functions that are continuous but not differentiable. (As we saw at the example above. f(x) = |x| is contionuous at 0, but is not differentiable at 0).The three ways for f not to be differentiable at aare:a) if the graph of a function f has a "corner" or a "kink" in it,b) a discontinuity,c) a vertical tangent
2/s
Both are polynomials. They are continuous and are differentiable.
Weistrass function is continuous everywhere but not differentiable everywhere
No.
If the graph of the function is a continuous line then the function is differentiable. Also if the graph suddenly make a deviation at any point then the function is not differentiable at that point . The slope of a tangent at any point of the graph gives the derivative of the function at that point.
both
Wherever a function is differentiable, it must also be continuous. The opposite is not true, however. For example, the absolute value function, f(x) =|x|, is not differentiable at x=0 even though it is continuous everywhere.
Definition: A function f is differentiable at a if f'(a) exists. it is differentiable on an open interval (a, b) [or (a, ∞) or (-∞, a) or (-∞, ∞)]if it is differentiable at every number in the interval.Example: Where is the function f(x) = |x| differentiable?Answer:1. f is differentiable for any x > 0 and x < 0.2. f is not differentiable at x = 0.That's mean that the curve y = |x| has not a tangent at (0, 0).Thus, both continiuty and differentiability are desirable properties for a function to have. These properties are related.Theorem: If f is differentiable at a, then f is continuous at a.The converse theorem is false, that is, there are functions that are continuous but not differentiable. (As we saw at the example above. f(x) = |x| is contionuous at 0, but is not differentiable at 0).The three ways for f not to be differentiable at aare:a) if the graph of a function f has a "corner" or a "kink" in it,b) a discontinuity,c) a vertical tangent
The tangent function, ( \tan(x) ), is not differentiable everywhere. It is differentiable wherever it is defined, which excludes points where the function has vertical asymptotes, specifically at ( x = \frac{\pi}{2} + k\pi ) for any integer ( k ). At these points, the function approaches infinity, leading to a discontinuity in its derivative. Thus, while ( \tan(x) ) is smooth and differentiable in its domain, it is not differentiable at the points where it is undefined.
No, a non-continuous function cannot be differentiable at the points of discontinuity. Differentiability requires the existence of a well-defined tangent line at a point, which necessitates continuity at that point. However, a function can be differentiable on intervals where it is continuous, even if it has discontinuities elsewhere.
which function is not differentiable infinitely many time.
The Fourier transfer of the signum function, sgn(t) is 2/(iω), where ω is the angular frequency (2πf), and i is the imaginary number.
2/s
Both are polynomials. They are continuous and are differentiable.