Look at the powers of 5 mod 7: 5¹ mod 7 = 5 5² mod 7 = 5 × (5¹ mod 7) mod 7 = (5 × 5) mode 7 = 25 mod 7 = 4 5³ mod 7 = 5 × (5² mod 7) mod 7 = (5 × 4) mod 7 = 20 mod 7 = 6 5⁴ mod 7 = 5 × (5³ mod 7) mod 7 = (5 × 6) mod 7 = 30 mod 7 = 2 5⁵ mod 7 = 5 × (5⁴ mod 7) mod 7 = (5 × 2) mod 7 = 10 mod 7 = 3 5⁶ mod 7 = 5 × (5⁵ mod 7) mod 7 = (5 × 3) mod 7 = 15 mod 7 = 1 5⁷ mod 7 = 5 × (5⁶ mod 7) mod 7 = (5 × 1) mod 7 = 5 mod 7 = 5 At this point, it is obvious that the remainders will repeat the cycle {5, 4, 6, 2, 3, 1} There are 6 remainders in the cycle, so the remainder of 30 divided by 6 will tell you which remainder to use; if the remainder is 0, use the 6th element. 30 ÷ 6 = 5 r 0 →use the 6th element which is 1, so 5³⁰ ÷ 7 will have a remainder of 1. 1 ≡ 5³⁰ mod 7.
0.9268
No because it is impossible. Let mod(x.3) denote the remainder when x is divided by 3. Let n be any integer. Then mod(n,3) = 0,1 or 2. When mod(n,3) = 0, mod(n2,3) = 0 When mod(n,3) = 1, mod(n2,3) = 1 When mod(n,3) = 2, mod(n2,3) = 4 and, equivalently mod(n2,3) = 1. So, there are no integers whose squar leaves a remainder of 2 when divided by 3.
This is very easy to prove using modulo arithmetic. Basically, what you do is to look at the remainder when a number (n) is divided by 3. Let k(mod 3) represent the remainder when a number is divided by 3. Since the divisor is 3, there are only 3 possible values for k, that is: n = 0(mod 3), 1(mod3) or 2(mod3). Suppose n = 0(mod 3) then n2 + 1 = 0 + 1(mod 3) = 1(mod 3) so that n2 + 1 leaves a remainder of 1 when divided by 3 and so is not divisible by 3. Suppose n = 1(mod 3) then n2 + 1 = 12 + 1(mod 3) = 2(mod 3) so that n2 + 1 leaves a remainder of 2 when divided by 3 and so is not divisible by 3. Suppose n = 2(mod 3) then n2 + 1 = 22 + 1(mod 3) = 5(mod 3) = 2(mod 3) so that n2 + 1 leaves a remainder of 2 when divided by 3 and so is not divisible by 3. Thus, for all possible values of n, division by 3 leaves a positive remainder. And so the result follows.
To find the units digit of 399 the question being asked is: What is (399) MOD 10? This does not necessitate evaluation of 399 before the modulus is done, as it can be done whenever it is possible during the multiplication as any multiple of 10 multiplied by 3 is still a multiple of 10. The first few powers of 3 modulus 10 are: 31 MOD 10 = 3 32 MOD 10 = (3 x 31) MOD 10 = (3 x 3) MOD 10 = 9 33 MOD 10 = (3 x 32) MOD 10 = (3 x 9) MOD 10 = 27 MOD 10 = 7 34 MOD 10 = (3 x 33) MOD 10 = (3 x 7) MOD 10 = 81 MOD 10 = 1 35 MOD 10 = (3 x 34) MOD 10 = (3 x 1) MOD 10 = 3 36 MOD 10 = (3 x 35) MOD 10 = (3 x 3) MOD 10 = 9 At this point, it can be seen that the answer is a repeating pattern of 3, 9, 7, 1, 3, 9, ... So we need the 99th element of this pattern. The pattern is a repeat of 4 digits, so we calculate 99 MOD 4 = 3. So the 3rd element of the repeating part is the answer: 7. (If the power MOD 4 had been 0, it would have been the 4th element of the pattern: 1)
1 mod 3 means the remainder after 1 has been divided by 3. Which is 1. 2 mod 3 = 2, 3 mod 3 = 0
Here's Lucy - 1968 Mod Mod Lucy 1-1 was released on: USA: 23 September 1968
999 MOD 1000 = 999
1 + 1 = 0 in binary. Why does this happen?Note: Adding binary numbers is related to modulo 2 arithmetic.Let's review mod and modular arithmetic with addition.modulus 2 is the mathematical term that is the remainder from the quotient of any term and 2. For instance, if we have 3 mod 2, then we have 3 / 2 = 1 + ½. The remainder is 1. So 3 ≡ 1 mod 2.What if we want to add moduli?The general form is a mod n + b mod n ≡ (a + b) mod n.Now, for the given problem, 1 mod 2 + 1 mod 2 ≡ 2 mod 2. Then, 2 mod 2 ≡ 0 mod 2.Therefore, 1 + 1 = 0 in binary.
Look at the powers of 5 mod 7: 5¹ mod 7 = 5 5² mod 7 = 5 × (5¹ mod 7) mod 7 = (5 × 5) mode 7 = 25 mod 7 = 4 5³ mod 7 = 5 × (5² mod 7) mod 7 = (5 × 4) mod 7 = 20 mod 7 = 6 5⁴ mod 7 = 5 × (5³ mod 7) mod 7 = (5 × 6) mod 7 = 30 mod 7 = 2 5⁵ mod 7 = 5 × (5⁴ mod 7) mod 7 = (5 × 2) mod 7 = 10 mod 7 = 3 5⁶ mod 7 = 5 × (5⁵ mod 7) mod 7 = (5 × 3) mod 7 = 15 mod 7 = 1 5⁷ mod 7 = 5 × (5⁶ mod 7) mod 7 = (5 × 1) mod 7 = 5 mod 7 = 5 At this point, it is obvious that the remainders will repeat the cycle {5, 4, 6, 2, 3, 1} There are 6 remainders in the cycle, so the remainder of 30 divided by 6 will tell you which remainder to use; if the remainder is 0, use the 6th element. 30 ÷ 6 = 5 r 0 →use the 6th element which is 1, so 5³⁰ ÷ 7 will have a remainder of 1. 1 ≡ 5³⁰ mod 7.
9100 mod 10 = (910 mod 10)10 mod 10 = 110 mod 10 = 1. Thus 1 is the ones digit in 9100.
0.9268
The Sears Model 1 may be a Winchester mod 121. L0ok there
No because it is impossible. Let mod(x.3) denote the remainder when x is divided by 3. Let n be any integer. Then mod(n,3) = 0,1 or 2. When mod(n,3) = 0, mod(n2,3) = 0 When mod(n,3) = 1, mod(n2,3) = 1 When mod(n,3) = 2, mod(n2,3) = 4 and, equivalently mod(n2,3) = 1. So, there are no integers whose squar leaves a remainder of 2 when divided by 3.
Here the sample space is(s)=10, =>mod(s)=10 a=be the event of getting exactly 5 boys =>mod(a)=5 b=be the event of getting exactly 5 girls =>mod(b)=5 thus, p(a)=mod(a)/mod(s)=5/10=1/2 p(b)=mod(b)/mod(s)=5/10=1/2 p(5 boys and 5 girls)=p(a)*p(b)=1/2*1/2=1/4
"mod" is short for "modulo", and indicates the remainder after division of the first number by the second. For example, 11 mod 2 = 1 (11 / 2 has an integer quotient of 5, with 1 left over).
This is very easy to prove using modulo arithmetic. Basically, what you do is to look at the remainder when a number (n) is divided by 3. Let k(mod 3) represent the remainder when a number is divided by 3. Since the divisor is 3, there are only 3 possible values for k, that is: n = 0(mod 3), 1(mod3) or 2(mod3). Suppose n = 0(mod 3) then n2 + 1 = 0 + 1(mod 3) = 1(mod 3) so that n2 + 1 leaves a remainder of 1 when divided by 3 and so is not divisible by 3. Suppose n = 1(mod 3) then n2 + 1 = 12 + 1(mod 3) = 2(mod 3) so that n2 + 1 leaves a remainder of 2 when divided by 3 and so is not divisible by 3. Suppose n = 2(mod 3) then n2 + 1 = 22 + 1(mod 3) = 5(mod 3) = 2(mod 3) so that n2 + 1 leaves a remainder of 2 when divided by 3 and so is not divisible by 3. Thus, for all possible values of n, division by 3 leaves a positive remainder. And so the result follows.