b + b + b + c + c + c + c = 3b + 4c
If: a = b+c+d Then: c = a-b-d
x + y + z = 0 x = a - b, y = b - c, z = c - a, therefore a - b + b - c + c - a = ? a - a + b - b + c - c = 0
A=0 b=0 c=0
the answer is a
b+b+b+c+c+c+c =3b+4c
b + b + b + c + c + c + c = 3b + 4c
2b + 2c or 2(b + c)
And how does this relate to coins?
a= (+a) or a= (-) b= 2a b= 2a c= (-a) c= (+a)
A+c= 2a+b
If a + b + c + d + 80 + 90 = 100, then a + b + c + d = -70.
If: a = b+c+d Then: c = a-b-d
Because there is no way to define the divisors, the equations cannot be evaluated.
x + y + z = 0 x = a - b, y = b - c, z = c - a, therefore a - b + b - c + c - a = ? a - a + b - b + c - c = 0
(a+b+c)²=a²+b²+c²+ 2ab+2bc+2ac
A=0 b=0 c=0