A single number does not constitute a sequence.
It is 0.2
The ratio is 4.
A geometric compass is an instrument, or a tool, used in plane geometry to draw arcs and circles. Not to be confused with the geometric and military compass invented by Galileo.
It is 1062882.
There can be no solution to geometric sequences and series: only to specific questions about them.
A geometric series represents the partial sums of a geometric sequence. The nth term in a geometric series with first term a and common ratio r is:T(n) = a(1 - r^n)/(1 - r)
The geometric series is, itself, a sum of a geometric progression. The sum of an infinite geometric sequence exists if the common ratio has an absolute value which is less than 1, and not if it is 1 or greater.
No.
Yes, that's what a geometric sequence is about.
A geometric series.
Divide any term in the sequence by the previous term. That is the common ratio of a geometric series. If the series is defined in the form of a recurrence relationship, it is even simpler. For a geometric series with common ratio r, the recurrence relation is Un+1 = r*Un for n = 1, 2, 3, ...
This is not a geometric series since -18/54 is not the same as -36/12
An arithmetic series is the sequence of partial sums of an arithmetic sequence. That is, if A = {a, a+d, a+2d, ..., a+(n-1)d, ... } then the terms of the arithmetic series, S(n), are the sums of the first n terms and S(n) = n/2*[2a + (n-1)d]. Arithmetic series can never converge.A geometric series is the sequence of partial sums of a geometric sequence. That is, if G = {a, ar, ar^2, ..., ar^(n-1), ... } then the terms of the geometric series, T(n), are the sums of the first n terms and T(n) = a*(1 - r^n)/(1 - r). If |r| < 1 then T(n) tends to 1/(1 - r) as n tends to infinity.
a sequence of shifted geometric numbers
A geometric sequence is : a•r^n while a quadratic sequence is a• n^2 + b•n + c So the answer is no, unless we are talking about an infinite sequence of zeros which strictly speaking is both a geometric and a quadratic sequence.
A descending geometric sequence is a sequence in which the ratio between successive terms is a positive constant which is less than 1.