d/dx cosec(x) = - cosec(x) * cot(x) so the second derivative or d(d/dx)/dx cosec(x) = [- cosec(x) * d/dx cot(x)] + [ - d/dx cosec(x) * cot(x)] = [- cosec(x) * -cosec^2(x)] + [ - (- cosec(x) * cot(x)) * cot(x)] = cosec(x) * cosec^2(x) + cosec(x)*cot^2(x) = cosec(x) * [cosec^2(x) + cot^2(x)].
cot x = (cos x) / (sin x) cos (x - 180) = cos x cos 180 + sin x sin 180 = - cos x sin (x - 180) = sin x cos 180 - cos x sin 180 = - sin x cot (x - 180) = (cos (x - 180)) / (sin (x - 180)) = (- cos x) / (- sin x) = (cos x) / (sin x) = cot x
the questions is 2x=(cot^2 x-1)/(cot^2 x+1)
cot(x) = 15/12 X = cot -1(15/12) In degree mode. X = 46o ======
Suppose csc(x)*sin(x) = cos(x)*cot(x) + y then, ince csc(x) = 1/sin(x), and cot(x) = cos(x)/sin(x), 1 = cos(x)*cos(x)/sin(x) + y so y = 1 - cos2(x)/sin(x) = 1 - [1 - sin2(x)]/sin(x) = [sin2(x) + sin(x) - 1]/sin(x)
First note that this not the graph of y = |cot(x)|.The equivalent equations for |y| = cot(x) or cot(x) = |y| arecot(x) = -y or cot(x) = +ySo plot y = cot x and then reflect all the points in the x-axis.
d/dx cosec(x) = - cosec(x) * cot(x) so the second derivative or d(d/dx)/dx cosec(x) = [- cosec(x) * d/dx cot(x)] + [ - d/dx cosec(x) * cot(x)] = [- cosec(x) * -cosec^2(x)] + [ - (- cosec(x) * cot(x)) * cot(x)] = cosec(x) * cosec^2(x) + cosec(x)*cot^2(x) = cosec(x) * [cosec^2(x) + cot^2(x)].
The derivative of cot(x) is -csc2(x).(Which is the same as -1/sin2(x).)
f'(x) = 1/tan(x) * sec^2(x) where * means multiply and ^ means to the power of. = cot(x) * sec^2(x) f''(x) = f'(cot(x)*sec^2(x) + cot(x)*f'[sec^2(x)] = -csc^2(x)*sec^2(x) + cot(x)*2tan(x)sec^2(x) = sec^2(x) [cot(x)-csc^2(x)] +2tan(x)cot(x) = sec^2(x) [cot(x)-csc^2(x)] +2
2 cot(x) + 1 = -1 2 cot(x) = -2 cot(x) = -1 cos(x)/sin(x) = -1 cos(x) = - sin(x) x = 135°, 315°, 495°, ... another one every 180 degrees
d/dx (cot x) = -csc2x
cot2x-tan2x=(cot x -tan x)(cot x + tan x) =0 so either cot x - tan x = 0 or cot x + tan x =0 1) cot x = tan x => 1 / tan x = tan x => tan2x = 1 => tan x = 1 ou tan x = -1 x = pi/4 or x = -pi /4 2) cot x + tan x =0 => 1 / tan x = -tan x => tan2x = -1 if you know about complex number then infinity is the solution to this equation, if not there's no solution in real numbers.
cot x = (cos x) / (sin x) cos (x - 180) = cos x cos 180 + sin x sin 180 = - cos x sin (x - 180) = sin x cos 180 - cos x sin 180 = - sin x cot (x - 180) = (cos (x - 180)) / (sin (x - 180)) = (- cos x) / (- sin x) = (cos x) / (sin x) = cot x
sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)
csc^2x+cot^2x=1
Cot(x) [cot2(x)-cot2(x)] [cot3(x)-cot3(x)] cot(x) = cot2(x)The second through fifth terms cancel each other out in pairs. The square brackets were added to make this clear.
the questions is 2x=(cot^2 x-1)/(cot^2 x+1)