There are 6 basic trig functions.sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = sin(x)/cos(x) or 1/cot(x)csc(x) = 1/sin(x)sec(x) = 1/cos(x)cot(x) = cos(x)/sin(x) or 1/tan(x)---- In your problem csc(x)*cot(x) we can simplify csc(x).csc(x) = 1/sin(x)Similarly, cot(x) = cos(x)/sin(x).csc(x)*cot(x) = (1/sin[x])*(cos[x]/sin[x])= cos(x)/sin2(x) = cos(x) * 1/sin2(x)Either of the above answers should work.In general, try converting your trig functions into sine and cosine to make things simpler.
Without an "equals" sign somewhere, no question has been asked,so there's nothing there that needs an answer.Is it the sum that you're looking for ?csc(x) + cot(x) = 1/sin(x) + cos(x)/sin(x) = [1 + cos(x)] / sin(x)
By converting everything to sines and cosines. Since tan x = sin x / cos x, in the cotangent, which is the reciprocal of the tangent: cot x = cos x / sin x. You can replace any other variable (like thetha) for the angle.
cot[x]= -1 cot[x] = cos[x] / sin[x] cos[x] / sin[x] = -1 cos[x] = -sin[x] |cos[x]| = |sin[x]| at every multiple of Pi/4 + Pi/2. However, the signs disagree at 3Pi/4 + nPi, where n is an integer.
There is not much that can be done by way of simplification. Suppose arccot(y) = tan(x) then y = cot[tan(x)] = 1/tan(tan(x)) Now cot is NOT the inverse of tan, but its reciprocal. So the expression in the first of above equation cannot be simplified further. Similarly tan[tan(x)] is NOT tan(x)*tan(x) = tan2(x)
The derivative of cot(x) is -csc2(x).
Do you mean? d/dx(cotX) = - csc2X --------------
(1 - csc2x)/(sinx*cotx) = -cot2x/sinxcotx = -cotx/sinx = -(cosx/sinx)/sinx = -cosx/sin2x = -cosx/(1-cos2x) = cosx/(cos2x - 1)
== cot(x)== 1/tan(x) = cos(x)/sin(x) Now substitute cos(x)/sin(x) into the expression, in place of cot(x) So now: sin(x) cot(x) cos(x) = sin(x) cos(x) (cos(x)/sin(x) ) sin(x) cos(x) cos(x)/sin(x) The two sin(x) cancel, leaving you with cos(x) cos(x) Which is the same as cos2(x) So: sin(x) cot(x) cos(x) = cos2(x) ===
The integral of cot (x) dx is ln (absolute value (sin (x))) + C. Without using the absolute value, you can use the square root of the square, i.e. ln (square root (sin2x)) + C
Manipulate normally, noting:cot x = cos x / sin xcos² x + sin² x = 1 → sin²x = 1 - cos² xa² - b² = (a + b)(a - b)1 = 1²ab = baa/(bc) = a/b/c(1 + cot x)² - 2 cot x = 1² + 2 cot x + cot² x - 2 cot x= 1 + cot² x= 1 + (cos x / sin x)²= 1 + cos² x / sin² x= 1 + cos² x / (1 - cos² x)= ((1 - cos² x) + cos² x)/(1 - cos² x)= 1/(1² - cos² x)= 1/((1 + cos x)(1 - cos x))= 1/(1 - cos x)/(1 + cos x)QED.
∫ cot(x) dx is written as: ∫ cos(x) / sin(x) dx Let u = sin(x). Then, du = cos(x) dx, giving us: ∫ 1/u du So the integral of 1/u is ln|u|. So the answer is ln|sin(x)| + c
First note that this not the graph of y = |cot(x)|.The equivalent equations for |y| = cot(x) or cot(x) = |y| arecot(x) = -y or cot(x) = +ySo plot y = cot x and then reflect all the points in the x-axis.
To solve this type of problems, I found that it helps to convert everything to sines and cosines: write csc x as 1 / sin x, and cot x as cos x / sin x, for example. Because of the "2x", you'll also need to look up the double angle trigonometric identities.
(sin(x)cot(x) - cos(x))/tan(x)(Multiply by tan(x)/tan(x))sin(x) - cos(x)tan(x)(tan(x) = sin(x)/cos(x))sinx - cos(x)(sin(x)/cos(x))(cos(x) cancels out)sin(x) - sin(x)0
d/dx cosec(x) = - cosec(x) * cot(x) so the second derivative or d(d/dx)/dx cosec(x) = [- cosec(x) * d/dx cot(x)] + [ - d/dx cosec(x) * cot(x)] = [- cosec(x) * -cosec^2(x)] + [ - (- cosec(x) * cot(x)) * cot(x)] = cosec(x) * cosec^2(x) + cosec(x)*cot^2(x) = cosec(x) * [cosec^2(x) + cot^2(x)].
I assume that with "modulus" you mean the absolute value. Start by graphing: y = cot x Remove negative values of the function value, since those can't be satisfied by the equation. You will also need to reflect the resulting function along the x-axis.