answersLogoWhite

0

sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra

Add your answer:

Earn +20 pts
Q: How do you simplify sec x cot x?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

How do you simplify sec x cot x cos x?

y = sec(x)*cot(x)*cos(x)To solve this trigonometric equation, you need to know these identities:sec(x) = 1/(cos(x))cot(x) = 1/(tan(x)) = (cos(x))/(sin(x))Now substitute these identities into the original equation:y = (1/cos(x))*((cos(x))/(sin(x)))*cos(x)Now cancel out the terms that are similar in the numerator and denominator to leave you with:y = (1/(sin(x)))*cos(x)y = (cos(x))/(sin(x))From the aforementioned known identity, the final simplified trigonometric equation becomes:y = cot(x)


What expression is equivalent to cot t sec t?

Which expression is equivalent to cot t sec t


Solution for tan x plus cot x divided by sec x csc x?

(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.


Simplify sinx cotx cosx?

== cot(x)== 1/tan(x) = cos(x)/sin(x) Now substitute cos(x)/sin(x) into the expression, in place of cot(x) So now: sin(x) cot(x) cos(x) = sin(x) cos(x) (cos(x)/sin(x) ) sin(x) cos(x) cos(x)/sin(x) The two sin(x) cancel, leaving you with cos(x) cos(x) Which is the same as cos2(x) So: sin(x) cot(x) cos(x) = cos2(x) ===


How do you draw the graph of modulus of y equals cot x?

First note that this not the graph of y = |cot(x)|.The equivalent equations for |y| = cot(x) or cot(x) = |y| arecot(x) = -y or cot(x) = +ySo plot y = cot x and then reflect all the points in the x-axis.