sec(x)*cot(x) = (1/cos(x))*(cos(x)/sin(x)) = (1/sin(x)) = csc(x)
Chat with our AI personalities
y = sec(x)*cot(x)*cos(x)To solve this trigonometric equation, you need to know these identities:sec(x) = 1/(cos(x))cot(x) = 1/(tan(x)) = (cos(x))/(sin(x))Now substitute these identities into the original equation:y = (1/cos(x))*((cos(x))/(sin(x)))*cos(x)Now cancel out the terms that are similar in the numerator and denominator to leave you with:y = (1/(sin(x)))*cos(x)y = (cos(x))/(sin(x))From the aforementioned known identity, the final simplified trigonometric equation becomes:y = cot(x)
Which expression is equivalent to cot t sec t
(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.
== cot(x)== 1/tan(x) = cos(x)/sin(x) Now substitute cos(x)/sin(x) into the expression, in place of cot(x) So now: sin(x) cot(x) cos(x) = sin(x) cos(x) (cos(x)/sin(x) ) sin(x) cos(x) cos(x)/sin(x) The two sin(x) cancel, leaving you with cos(x) cos(x) Which is the same as cos2(x) So: sin(x) cot(x) cos(x) = cos2(x) ===
First note that this not the graph of y = |cot(x)|.The equivalent equations for |y| = cot(x) or cot(x) = |y| arecot(x) = -y or cot(x) = +ySo plot y = cot x and then reflect all the points in the x-axis.