In order to answer the question is is necessary to know what the explicit formula was. But, since you have not bothered to provide that information, the answer is .
The answer depends on what the explicit rule is!
-7
Good Question! After 6 years of math classes in college, and 30+ years of teaching (during which I took many summer classes) I've never seen an explicit formula for the nth term of the Fibonacci sequence. Study more math and maybe you can discover the explicit formula that you want.
-7
The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)
The explicit formula for a sequence is a formula that allows you to find the nth term of the sequence directly without having to find all the preceding terms. To find the explicit formula for a sequence, you need to identify the pattern or rule that governs the sequence. This can involve looking at the differences between consecutive terms, the ratios of consecutive terms, or any other mathematical relationship that exists within the sequence. Once you have identified the pattern, you can use it to create a formula that will generate any term in the sequence based on its position (n) in the sequence.
what is the recursive formula for this geometric sequence?
The answer depends on what the explicit rule is!
un = u0*rn for n = 1,2,3, ... where r is the constant multiple.
-7
4, -1236, -108 is not a geometric system.
Good Question! After 6 years of math classes in college, and 30+ years of teaching (during which I took many summer classes) I've never seen an explicit formula for the nth term of the Fibonacci sequence. Study more math and maybe you can discover the explicit formula that you want.
The explicit formula here is 5+ 6x. solved at x=25 you get 155
-7
The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)
Yes, it can both arithmetic and geometric.The formula for an arithmetic sequence is: a(n)=a(1)+d(n-1)The formula for a geometric sequence is: a(n)=a(1)*r^(n-1)Now, when d is zero and r is one, a sequence is both geometric and arithmetic. This is because it becomes a(n)=a(1)1 =a(1). Note that a(n) is often written anIt can easily observed that this makes the sequence a constant.Example:a(1)=a(2)=(i) for i= 3,4,5...if a(1)=3 then for a geometric sequence a(n)=3+0(n-1)=3,3,3,3,3,3,3and the geometric sequence a(n)=3r0 =3 also so the sequence is 3,3,3,3...In fact, we could do this for any constant sequence such as 1,1,1,1,1,1,1...or e,e,e,e,e,e,e,e...In general, let k be a constant, the sequence an =a1 (r)1 (n-1)(0) with a1 =kis the constant sequence k, k, k,... and is both geometric and arithmetic.
arithmetic sequence * * * * * A recursive formula can produce arithmetic, geometric or other sequences. For example, for n = 1, 2, 3, ...: u0 = 2, un = un-1 + 5 is an arithmetic sequence. u0 = 2, un = un-1 * 5 is a geometric sequence. u0 = 0, un = un-1 + n is the sequence of triangular numbers. u0 = 0, un = un-1 + n(n+1)/2 is the sequence of perfect squares. u0 = 1, u1 = 1, un+1 = un-1 + un is the Fibonacci sequence.