un = u0*rn for n = 1,2,3, ...
where r is the constant multiple.
what is the recursive formula for this geometric sequence?
Yes, that's what a geometric sequence is about.
The given sequence is a geometric sequence where each term is multiplied by 2 to get the next term. The first term (a) is 4, and the common ratio (r) is 2. The nth term of a geometric sequence can be found using the formula ( a_n = a \cdot r^{(n-1)} ). Therefore, the nth term of this sequence is ( 4 \cdot 2^{(n-1)} ).
A geometric sequence is : a•r^n while a quadratic sequence is a• n^2 + b•n + c So the answer is no, unless we are talking about an infinite sequence of zeros which strictly speaking is both a geometric and a quadratic sequence.
It is called arithmetico-geometric sequence. I have added a link with some nice information about them.
what is the recursive formula for this geometric sequence?
4, -1236, -108 is not a geometric system.
No.
Yes, that's what a geometric sequence is about.
a sequence of shifted geometric numbers
The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)
The given sequence is a geometric sequence where each term is multiplied by 2 to get the next term. The first term (a) is 4, and the common ratio (r) is 2. The nth term of a geometric sequence can be found using the formula ( a_n = a \cdot r^{(n-1)} ). Therefore, the nth term of this sequence is ( 4 \cdot 2^{(n-1)} ).
In order to answer the question is is necessary to know what the explicit formula was. But, since you have not bothered to provide that information, the answer is .
Yes, it can both arithmetic and geometric.The formula for an arithmetic sequence is: a(n)=a(1)+d(n-1)The formula for a geometric sequence is: a(n)=a(1)*r^(n-1)Now, when d is zero and r is one, a sequence is both geometric and arithmetic. This is because it becomes a(n)=a(1)1 =a(1). Note that a(n) is often written anIt can easily observed that this makes the sequence a constant.Example:a(1)=a(2)=(i) for i= 3,4,5...if a(1)=3 then for a geometric sequence a(n)=3+0(n-1)=3,3,3,3,3,3,3and the geometric sequence a(n)=3r0 =3 also so the sequence is 3,3,3,3...In fact, we could do this for any constant sequence such as 1,1,1,1,1,1,1...or e,e,e,e,e,e,e,e...In general, let k be a constant, the sequence an =a1 (r)1 (n-1)(0) with a1 =kis the constant sequence k, k, k,... and is both geometric and arithmetic.
A geometric sequence is : a•r^n while a quadratic sequence is a• n^2 + b•n + c So the answer is no, unless we are talking about an infinite sequence of zeros which strictly speaking is both a geometric and a quadratic sequence.
antonette taño invented geometric sequence since 1990's
A descending geometric sequence is a sequence in which the ratio between successive terms is a positive constant which is less than 1.