the standard error will be 1
A sample of 24 observations is taken from a population that has 150 elements. The sampling distribution of is
A statistic based on a sample is an estimate of some population characteristic. However, samples will differ and so the statistic - which is based on the sample - will take different values. The sampling distribution gives an indication of ho accurate the sample statistic is to its population counterpart.
64.
The Central Limit Theorem states that the sampling distribution of the sample means approaches a normal distribution as the sample size gets larger — no matter what the shape of the population distribution. This fact holds especially true for sample sizes over 30.
i THINK IT IS .05
the sampe mean cannot be comoputed
Population distribution refers to the patterns that a population creates as they spread within an area. A sampling distribution is a representative, random sample of that population.
A sample of 24 observations is taken from a population that has 150 elements. The sampling distribution of is
If the samples are drawn frm a normal population, when the population standard deviation is unknown and estimated by the sample standard deviation, the sampling distribution of the sample means follow a t-distribution.
The sampling distribution of the sample mean (( \bar{x} )) will be approximately normally distributed if the sample size is sufficiently large, typically due to the Central Limit Theorem. This theorem states that regardless of the population's distribution, the sampling distribution of the sample mean will tend to be normal as the sample size increases, generally n ≥ 30 is considered adequate. However, if the population distribution is already normal, the sampling distribution of ( \bar{x} ) will be normally distributed for any sample size.
you can figure it out by going to google and googling it
A statistic based on a sample is an estimate of some population characteristic. However, samples will differ and so the statistic - which is based on the sample - will take different values. The sampling distribution gives an indication of ho accurate the sample statistic is to its population counterpart.
12
If the population distribution is roughly normal, the sampling distribution should also show a roughly normal distribution regardless of whether it is a large or small sample size. If a population distribution shows skew (in this case skewed right), the Central Limit Theorem states that if the sample size is large enough, the sampling distribution should show little skew and should be roughly normal. However, if the sampling distribution is too small, the sampling distribution will likely also show skew and will not be normal. Although it is difficult to say for sure "how big must a sample size be to eliminate any population skew", the 15/40 rule gives a good idea of whether a sample size is big enough. If the population is skewed and you have fewer that 15 samples, you will likely also have a skewed sampling distribution. If the population is skewed and you have more that 40 samples, your sampling distribution will likely be roughly normal.
When the standard deviation of a population is known, the sampling distribution of the sample mean will be normally distributed, regardless of the shape of the population distribution, due to the Central Limit Theorem. The mean of this sampling distribution will be equal to the population mean, while the standard deviation (known as the standard error) will be the population standard deviation divided by the square root of the sample size. This allows for the construction of confidence intervals and hypothesis testing using z-scores.
Thanks to the Central Limit Theorem, the sampling distribution of the mean is Gaussian (normal) whose mean is the population mean and whose standard deviation is the sample standard error.
a large number of samples of size 50 were selected at random from a normal population with mean and variance.The mean and standard error of the sampling distribution of the sample mean were obtain 2500 and 4 respectivly.Find the mean and varince of the population?