log4+log3=log(4x3)=log12
Well, honey, the common logarithm of 0.072 is approximately -1.1427. So, if you're looking to crunch some numbers, that's the answer you're looking for. Just remember, math doesn't care if you're having a bad hair day.
Definition to use for the log (logarithm):the logarithm of a number (n) to a given base (b) is the exponent (e) to which the base must be raised in order to produce that number.(Raising to the power is the inverse of taking the logarithm.)logb(n) = e or be = nFor example, the logarithm of 1000 to base 10 is 3 ( log10(1000) = 3),because 10 to the power of 3 is 1000: 103 = 1000.-log10[H+] is (by definition) used to calculate the pH of a dilute solution in which [H+] = concentration of H+ (or H3O+) in mol/L.pH = -log10[H+] or [H+] = 10-pH
3^(-2x + 2) = 81? log(3^(-2x + 2)) = log(81) (-2x+2)log(3) = log(81) -2x = log(81)/log(3) - 2 x = (-1/2)(log(81)/log(3)) + 1
15xplus 3
Sometimes. The inverse of y sin x is y sin-1x, the inverse of a number is one divided by the number, also called the reciprocal of the number, y x, then y-1 x-1 1/x. However, the inverse logarithm of a given number is the number whose logarithm is the given number. Log of 1000 is 3 and 1000 is inverse log 3.
The expression "3 log" typically refers to the logarithm of a number, often written as ( \log(3) ) or sometimes ( 3 \cdot \log(x) ), where ( x ) is the number being logged. The logarithm represents the power to which a base must be raised to produce a given number. If you mean ( \log(3) ) in base 10, it approximately equals 0.477. If you meant something else, please provide more context!
The meaning of this subscript is the base of a specific logarithm; example: log10, the usual logarithm with the base 10.
log base 3 of x = lnx
log316 - log32 = log38
Yes. The logarithm of 1 is zero; the logarithm of any number less than one is negative. For example, in base 10, log(0.1) = -1, log(0.01) = -2, log(0.001) = -3, etc.
A number for which a given logarithm stands is the result that the logarithm function yields when applied to a specific base and value. For example, in the equation log(base 2) 8 = 3, the number for which the logarithm stands is 8.
The logarithm of 8, denoted as log(8), refers to the power to which a base must be raised to obtain the number 8. If the base is 10 (common logarithm), log(8) is approximately 0.903. If the base is 2 (binary logarithm), log₂(8) equals 3, since 2 raised to the power of 3 equals 8. The value of log(8) can vary depending on the chosen base.
To solve the equation (2^x = 3), take the logarithm of both sides. This can be done using either natural logarithm (ln) or common logarithm (log): [ x = \log_2(3) = \frac{\log(3)}{\log(2)} ] This gives you the value of (x) in terms of logarithms. You can then use a calculator to find the numerical value if needed.
3x = 18Take the logarithm of each side:x log(3) = log(18)Divide each side by log(3):x = log(18) / log(3) = 1.25527 / 0.47712x = 2.63093 (rounded)
3: The negative of the logarithm (base 10) of the concentration. The logarithm of 1 is 0 and the logarithm of 10-3 is -3; the logarithm of their product is the sum of their individual logarithms, -3 in this instance, and the negative of -3 is +3.
The browser which is used for posting questions is almost totally useless for mathematical questions since it blocks most symbols.I am assuming that your question is about log base 3 of (x plus 1) plus log base 2 of (x-1).{log[(x + 1)^log2} + {log[(x - 1)^log3}/log(3^log2) where all the logs are to the same base - whichever you want. The denominator can also be written as log(3^log2)This can be simplified (?) to log{[(x + 1)^log2*(x - 1)^log3}/log(3^log2).As mentioned above, the expression can be to any base and so the expression becomesin base 2: log{[(x + 1)*(x - 1)^log3}/log(3) andin base 3: log{[(x + 1)^log2*(x - 1)}/log(2)
It is a numerical expression.