Given the graphic capability of this site, you are going to have to use some imagination!
<---------a--------->
<---a-b---><--b-->
+-----------+-------+
|...............|..........|
|.......P......|....Q...|
|...............|..........|
+-----------+-------+
|.......R......|....S....|
|...............|..........|
+-----------+-------+
In the above graphic, P, S and the whole figure are meant to be squares.
The total area is P+Q+R+S = a2
P = (a-b)2
Q = b*(a-b) = (a-b)*b = a*b - b2
R = (a-b)*b = a*b = a*b - b2
and
S = b2
Now, P = {P+Q+R+S} - Q - R - S
= a2 - ab + b2 - ab + b2 - b2
= a2 - 2ab + b2
In view of the graphic capabilities of this site, you will need to use a fair amount of imagination! Here goes: <------a+b------> <----a----><-b-> +-----------+-----+ |. . . . . . . .|. . . .| |. . . P. . . .|. .Q. | |. . . . . . . .|. . . .| +-----------+-----+ |. . . R. . . .|. .S. | |. . . . . . . .|. . . .| +----------+-----+ Where P = a*a = a2 Q = a*b R = b*a = a*b S = b*b = b2 (a + b)2 = P + Q + R + S = a2 + ab + ab + b2 = a2 + 2ab + b2
(ab) raised to 1/2 power
Find ab
AB can be found by using the distance formula, which is the square root of (x2-x1)^2 + (y2-y1)^2. In this case, AB= the square root of (-2-(-8))^2 + (-4-(-4))^2 which AB= the square root of 64 + 0 which AB=8.
If you mean (a-b+c)^2, then... a^2 - ab + ac - ab + b^2 - bc + ac - bc + c^2 = a^2 + b^2 + c^2 - 2ab + 2ac - 2bc.
In view of the graphic capabilities of this site, you will need to use a fair amount of imagination! Here goes: <------a+b------> <----a----><-b-> +-----------+-----+ |. . . . . . . .|. . . .| |. . . P. . . .|. .Q. | |. . . . . . . .|. . . .| +-----------+-----+ |. . . R. . . .|. .S. | |. . . . . . . .|. . . .| +----------+-----+ Where P = a*a = a2 Q = a*b R = b*a = a*b S = b*b = b2 (a + b)2 = P + Q + R + S = a2 + ab + ab + b2 = a2 + 2ab + b2
(A+B)2 = (A+B).(A+B) =A2+AB+BA+B2 =A2+2AB+ B2 So the Answer is A + B the whole square is equal to A square plus 2AB plus B square. Avinash.
(ab) raised to 1/2 power
Find ab
a square is ab square
AB can be found by using the distance formula, which is the square root of (x2-x1)^2 + (y2-y1)^2. In this case, AB= the square root of (-2-(-8))^2 + (-4-(-4))^2 which AB= the square root of 64 + 0 which AB=8.
If you mean (a-b+c)^2, then... a^2 - ab + ac - ab + b^2 - bc + ac - bc + c^2 = a^2 + b^2 + c^2 - 2ab + 2ac - 2bc.
Take C minor as an example: Whole - C to D Half - D to Eb Whole - Eb to F Whole - F to G Half - G to Ab Whole - Ab to Bb Whole - Bb to C
The length of its side squared.
The square root of Ab^2 is |b|√A, where A is a positive real number and b is any real number. The absolute value of b is taken to ensure the result is always positive or zero. If b is negative, the result will be |b| times the square root of A.
never
The length of ab can be found by using the Pythagorean theorem. The length of ab is equal to the square root of (0-8)^2 + (0-2)^2 which is equal to the square root of 68. Therefore, the length of ab is equal to 8.24.