start by setting y=lnx^lnx take ln of both sides lny=lnx(ln(lnx)) differentiate dy/dx(1/y)=(1+ln(lnx))/x dy/dx=y(1+ln(lnx))/x we know that y=lnx^lnx so we can just substatute back in dy/dx=(lnx^lnx)*(1+ln(lnx))/x
-1/x2
ln(√x)=√(lnx) because √x = x^(1/2), ln(x^(1/2))=√(lnx) using a logarithmic property, we can say that .5(lnx)=√(lnx) now, pretend that lnx=y .5y=√y square both sides .25y^2=y subtract y from both sides .25y^2 -y=0 factor y(.25y - 1)=0 so either y=0 or .25y -1 =0 If .25y -1=0, then y=4 so lnx=0 or lnx=4 lnx cannot equal zero because lnx=0 means e^x=0 and that is impossible. Now, we are left with lnx=4 Isolate x by making both sides of the equation powers of e: e^(lnx)=e^4 x=e^4, which is approximately 54.6 Lastly, check this answer by plugging e^4 back into the original equation: ln(√(e^4))=√(ln(e^4)) ln(e^2)=√(4(lne)) 2lne=2√1 2(1)=2 2=2 There you go!
Derivative of lnx= (1/x)*(derivative of x) example: Find derivative of ln2x d(ln2x)/dx = (1/2x)*d(2x)/dx = (1/2x)*2===>1/x When the problem is like ln2x^2 or ln-square root of x...., the answer won't come out in form of 1/x.
In order to evaluate a definite integral first find the indefinite integral. Then subtract the integral evaluated at the bottom number (usually the left endpoint) from the integral evaluated at the top number (usually the right endpoint). For example, if I wanted the integral of x from 1 to 2 (written with 1 on the bottom and 2 on the top) I would first evaluate the integral: the integral of x is (x^2)/2 Then I would subtract the integral evaluated at 1 from the integral evaluated at 2: (2^2)/2-(1^2)/2 = 2-1/2 =3/2.
integration by parts. Let u=lnx, dv=xdx-->du=(1/x)dx, v=.5x^2. Integral of (xlnxdx)=lnx*.5x^2-integral of .5x^2(1/x)dx=lnx*.5x^2-integral of .5xdx=lnx*.5x^2-(1/6)x^3. That's it.
xln(x)-x
start by setting y=lnx^lnx take ln of both sides lny=lnx(ln(lnx)) differentiate dy/dx(1/y)=(1+ln(lnx))/x dy/dx=y(1+ln(lnx))/x we know that y=lnx^lnx so we can just substatute back in dy/dx=(lnx^lnx)*(1+ln(lnx))/x
Do you want ∫x lnx dx? Let's call that I, which we now seek to find. The solution is I = ½ x2 lnx - ¼ x2; here is how we can find it: Let z = lnx. Then, x = ez, dx = ez dz, and dI = x lnx dx. Then, dI = (ez)(z)(ez dz) = ze2z dz = ¼ (2z e2z d(2z)). Thus, 4dI = wew dw, where we let w = 2z = 2 lnx. Now, d(wew) = ew dw + w d(ew) = ew dw + wew dw = ew dw + 4dI; hence, 4dI = d(wew) - ewdw = d(wew) - d(ew)­ = d((w - 1)ew). Therefore, 4I = (w - 1)ew = (2 lnx - 1)x2 = 2x2 lnx - x2; and I = ½ x2 lnx - ¼ x2, which is the answer we sought. Checking, we differentiate back, to confirm that I' = x lnx: I = ¼ x2(2 lnx - 1), whence, 4I' = (x2(2 lnx - 1))' = 2x(2 lnx - 1) + x2 (2/x) = 2x(2 lnx - 1) + 2x = 2x(2 lnx) = 4x lnx; thus, I' = x lnx, re-assuring us that we have integrated correctly.
-1
e1 + (lnx) = e1 * e(lnx) = e * x = ex
The derivative of 1/lnx, can be found easily using either the chain rule or the quotient rule. It is -1/[x*(lnx)2]
First one: f'(x) = 2x*lnx + x^2*(1/x) = 2x*lnx + x = x*(2*lnx + 1) Second derivate: f"(x) = D [x*(2*lnx + 1)] = 1*(2*lnx + 1) + x*(2/x) = 2*lnx+1+2 = 2*lnx + 3 So, there is a minimum in this graph on point (1/e^(1/2)), -1/(2e)) = MIN(x, y) Van Sanden David Belgium
ln(x4)?d/dx(ln(u))=1/u*d/dx(u)d/dx(ln(x4))=[1/x4]*d/dx(x4)-The derivative of x4 is:d/dx(x4)=4x4-1d/dx(x4)=4x3d/dx(ln(x4))=[1/x4]*(4x3)d/dx(ln(x4))=4x3/x4d/dx(ln(x4))=4/x(lnx)4?Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(lnx)4=4(lnx)4-1*d/dx(lnx)d/dx(lnx)4=4(lnx)3*d/dx(lnx)-The derivative of lnx is:d/dx(ln(u))=1/u*d/dx(u)d/dx(lnx)=1/x*d/dx(x)d/dx(lnx)=1/x*(1)d/dx(lnx)=1/xd/dx(lnx)4=4(lnx)3*(1/x)d/dx(lnx)4=4(lnx)3/x
The solution to this is: (xx)'= (elnx to the power of x)'= (exlnx)'= (xlnx)'*exlnx= [x(1/x) + 1(lnx)]*exlnx = (lnx+1)*exlnx= (lnx+1)*xx
If: u = 1+lnx Then: x = (u-1)/(ln)
1/X