No. log 20 is a positive number , so it you subtract it from log 5 you get less than log 5. However, log10 5 = 1 - log102 = 2- log1020 . or log 5 - log 20 = log 5 - log 4*5 = log 5 - (log 5 + log 4) = log 5 - log 5 - log 4 = - log 4 But we do not need to do all of these computations, because log 5 is different from log 5 - log 20 by the law of the equality that says two equals remain equal if and only if we subtract (in our case) the same thing from them.
The 'common' log of 4 is 0.60206 (rounded) The 'natural' log of 4 is 1.3863 (rounded)
You use the identities: log(ab) = b log(a), and log(ab) = log a + log b. In this case, 5 log42 + 7 log4x + 4 log4y = log432 + log4x7 + log4y4 = log4 (32x7y4).
log4+log3=log(4x3)=log12
1.268293446
log(2) + log(4) = log(2x)log(2 times 4) = log(2x)2 times 4 = 2 times 'x'x = 4
k=log4 91.8 4^k=91.8 -- b/c of log rules-- log 4^k=log 91.8 -- b/c of log rules-- k*log 4=log91.8 --> divide by log 4 k=log 91.8/log 4 k= 3.260
log 0.0001= -4
No. log 20 is a positive number , so it you subtract it from log 5 you get less than log 5. However, log10 5 = 1 - log102 = 2- log1020 . or log 5 - log 20 = log 5 - log 4*5 = log 5 - (log 5 + log 4) = log 5 - log 5 - log 4 = - log 4 But we do not need to do all of these computations, because log 5 is different from log 5 - log 20 by the law of the equality that says two equals remain equal if and only if we subtract (in our case) the same thing from them.
-2
The 'common' log of 4 is 0.60206 (rounded) The 'natural' log of 4 is 1.3863 (rounded)
log x = -4 => x = 10-4 = 0.0001
4 divided by 84 in log div = 0.047619047619047616
You use the identities: log(ab) = b log(a), and log(ab) = log a + log b. In this case, 5 log42 + 7 log4x + 4 log4y = log432 + log4x7 + log4y4 = log4 (32x7y4).
log4+log3=log(4x3)=log12
True. For example: 4 X 104/2 X 108 = 2 X 10-4
log3 + logx=4 log(3x)=4 3x=10^4 x=10,000/3