8 + (74 x 6) = 75th term. nth term = 8 + 6(n-1)
t(n) = 10 - 6n where n = 1, 2, 3, ...
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
The given sequence is an arithmetic sequence with a common difference of 6, as each term increases by 6. To find the nth term of an arithmetic sequence, we use the formula: nth term = a + (n-1)d, where a is the first term, d is the common difference, and n is the term number. In this case, the first term a = 2, the common difference d = 6, and the term number n is not specified. Therefore, the nth term of the sequence 2, 8, 14, 20, 26 is 2 + (n-1)6.
Well, isn't that just a lovely pattern we have here? Each term is increasing by 4, isn't that delightful? So, if we want to find the nth term, we can use the formula: nth term = first term + (n-1) * common difference. Just like painting a happy little tree, we can plug in the values and find the nth term with ease.
It is: 26-6n
8 + (74 x 6) = 75th term. nth term = 8 + 6(n-1)
Well, isn't that just a lovely pattern we have here? Each term is increasing by 4, isn't that delightful? So, if we want to find the nth term, we can use the formula: nth term = first term + (n-1) * common difference. Just like painting a happy little tree, we can plug in the values and find the nth term with ease.
The nth term in this arithmetic sequence is an=26+(n-1)(-8).
It is: nth term = 7n-9
It is: nth term = 35-9n
The given sequence is an arithmetic sequence with a common difference of 6, as each term increases by 6. To find the nth term of an arithmetic sequence, we use the formula: nth term = a + (n-1)d, where a is the first term, d is the common difference, and n is the term number. In this case, the first term a = 2, the common difference d = 6, and the term number n is not specified. Therefore, the nth term of the sequence 2, 8, 14, 20, 26 is 2 + (n-1)6.
46n9
Here are the first five terms of a sequence. 12 19 26 33 40 Find an expression for the nth term of this sequence.
Tn = 10 + n2
20 because 26+14+20 = 60 and 60/3 = 20
The common difference (d) between successive terms is -9. The first term (a) is 26 The formula for the nth term [a(n)] of an Arithmetic Series is , a + (n - 1)d. Inputting the values for a and d gives :- a(n) = 26 - 9(n - 1) = 26 - 9n + 9 = 35 - 9n......where n = 1,2,3......