This Wikipedia passage should be able to help you out. Note that this is just a cube and other shapes such as spheres will have a different ratio.
(From Wikipedia "Surface Area to Volume Ratio")
The surface-area-to-volume ratio has physical dimension L−1 (inverse length) and is therefore expressed in units of inverse distance. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm2 and a volume of 1 cm3. The surface to volume ratio for this cube is thus
{\displaystyle {\mbox{SA:V}}={\frac {6~{\mbox{cm}}^{2}}{1~{\mbox{cm}}^{3=6~{\mbox{cm}}^{-1}}. For a given shape, SA:V is inversely proportional to size. A cube 2 cm on a side has a ratio of 3 cm−1, half that of a cube 1 cm on a side. Conversely, preserving SA:V as size increases requires changing to a less compact shape.The surface-area-to-volume ratio may be calculated as follows: -- Find the surface area of the shape. -- Find the volume of the shape. -- Divide the surface area by the volume. The quotient is the surface-area-to-volume ratio.
You measure or calculate the surface area; you measure or calculate the volume and then you divide the first by the second. The surface areas and volumes will, obviously, depend on the shape.
1) Calculate the area 2) Calculate the volume 3) Divide the area by the volume to get the ratio
The surface area to volume ratio of a cell affects the rate of diffusion in that the higher the ratio, the faster the rate of diffusion. This is a directly proportional relationship.
The surface-area-to-volume ratio also called the surface-to-volume ratio and variously denoted sa/volor SA:V, is the amount of surface area per unit volume of an object or collection of objects. The surface-area-to-volume ratio is measured in units of inverse distance. A cube with sides of length a will have a surface area of 6a2 and a volume of a3. The surface to volume ratio for a cube is thus shown as .For a given shape, SA:V is inversely proportional to size. A cube 2 m on a side has a ratio of 3 m−1, half that of a cube 1 m on a side. On the converse, preserving SA:V as size increases requires changing to a less compact shape.
To obtain the ratio of surface area to volume, divide the surface area by the volume.
The surface-area-to-volume ratio may be calculated as follows: -- Find the surface area of the shape. -- Find the volume of the shape. -- Divide the surface area by the volume. The quotient is the surface-area-to-volume ratio.
to obtain the ratio of surface area to volume, divide the surface area by the volume.
As volume increases surface area increase, but the higher the volume the less surface area in the ratio. For example. A cube 1mmx1mmx1mm has volume of 1mm3 surface area of 6mm2 which is a ration of 1:6 and a cube of 2mmx2mmx2mm has a volume of 8mm3 and surface area of 24mm2 which is a ratio of 1:3.
surface area/ volume. wider range of surface area to volume is better for cells.
0.6 is the surface area to volume ratio.
The cell's ratio of surface area to volume would decrease if its volume increases more rapidly than its surface area.
To calculate the surface area to volume ratio, simply divide the surface area of the object by its volume. This ratio is commonly used in science to understand how efficiently an object exchanges materials with its environment, with a higher ratio indicating better surface area for exchange relative to its volume.
surface area/ volume. wider range of surface area to volume is better for cells.
Surface area of cell is divided volume of cell to get surface to volume ratio . If surface area is 8 cm2 and volume is 2 cm2 . The ratio would be 4:1 .
The surface-area-to-volume-ratio
As cell volume increases, the ratio of cell surface area to cell volume decreases. This is because the surface area increases by a square factor while the volume increases by a cube factor. A higher surface area to volume ratio is more favorable for efficient nutrient exchange and waste removal in cells.