You measure or calculate the surface area; you measure or calculate the volume and then you divide the first by the second.
The surface areas and volumes will, obviously, depend on the shape.
The surface-area-to-volume ratio may be calculated as follows: -- Find the surface area of the shape. -- Find the volume of the shape. -- Divide the surface area by the volume. The quotient is the surface-area-to-volume ratio.
1) Calculate the area 2) Calculate the volume 3) Divide the area by the volume to get the ratio
The surface area to volume ratio of a cell affects the rate of diffusion in that the higher the ratio, the faster the rate of diffusion. This is a directly proportional relationship.
The surface-area-to-volume ratio also called the surface-to-volume ratio and variously denoted sa/volor SA:V, is the amount of surface area per unit volume of an object or collection of objects. The surface-area-to-volume ratio is measured in units of inverse distance. A cube with sides of length a will have a surface area of 6a2 and a volume of a3. The surface to volume ratio for a cube is thus shown as .For a given shape, SA:V is inversely proportional to size. A cube 2 m on a side has a ratio of 3 m−1, half that of a cube 1 m on a side. On the converse, preserving SA:V as size increases requires changing to a less compact shape.
0.4 m-1 is the ration of surface area 588m2 to volume 1372m3 for a sphere.
The surface-area-to-volume ratio may be calculated as follows: -- Find the surface area of the shape. -- Find the volume of the shape. -- Divide the surface area by the volume. The quotient is the surface-area-to-volume ratio.
1) Calculate the area 2) Calculate the volume 3) Divide the area by the volume to get the ratio
You need to:* Calculate the surface area * Calculate the volume * Divide the surface area by the volume
To calculate the surface area to volume ratio, simply divide the surface area of the object by its volume. This ratio is commonly used in science to understand how efficiently an object exchanges materials with its environment, with a higher ratio indicating better surface area for exchange relative to its volume.
1. Calculate the surface area 2. Calculate the volume 3. Divide
Multiply the surface area by the volume Also stop cheating ur hw
To obtain the ratio of surface area to volume, divide the surface area by the volume.
Surface area to volume ratio is defined as the amount of surface area per unit volume of either a single object or a collection of objects. The calculation of this measurement is important in figuring out the rate at which a chemical reaction will proceed.
To find the ratio of surface area to volume, we divide the surface area by the volume. Given a surface area of 588 and a volume of 1372, the ratio is ( \frac{588}{1372} ), which simplifies to approximately 0.429. Thus, the ratio of surface area to volume is about 0.429:1.
to obtain the ratio of surface area to volume, divide the surface area by the volume.
To find the ratio of surface area to volume for the sphere, you divide the surface area by the volume. Given that the surface area is 588 and the volume is 1372, the ratio is ( \frac{588}{1372} \approx 0.428 ). Thus, the ratio of surface area to volume for the sphere is approximately 0.428.
The formula for the surface area of a cylinder is 2πr² + 2πrh, where r is the radius and h is the height. The formula for the volume of a cylinder is πr²h. The surface area to volume ratio can be calculated by dividing the surface area by the volume.