Clearly we can't see the inequality here as the sign is missing, but if for example we have:
x2 < 25
then x < 251/2
The two square roots of 25 are 5 and -5.
Thus the values here will lie between the range -5 to 5 (exclusive - i.e. not including -5 and 5) which we can write as:
-5 < x < 5
Chat with our AI personalities
An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.An inequality, like an equation, can have a different number of solutions depending on the inequality and the domain.For example, x2< 0 has no solutions if the domain is the real numbers.x< 5 has only one solution ( = 4) if the domain consists of the squares of positive even numbers.x < 5 has infinitely many solutions if the domain is the rational numbers or real numbers.
that would be limited to 3 and -3 for values of x
The solution to the inequality x^2 > 36 can be found by first determining the values that make the inequality true. To do this, we need to find the values of x that satisfy the inequality. Since x^2 > 36, we know that x must be either greater than 6 or less than -6. Therefore, the solution to the inequality x^2 > 36 is x < -6 or x > 6.
if x2 ≠ 16, then: {x | x ∈ ℜ, x ∉ (4, -4)}
Id x2 = 169, then x = ±√169 = {-13, +13}