answersLogoWhite

0

To find the first term and common ratio of a geometric progression, we can use the formula for the nth term of a geometric sequence: (a_n = a_1 \times r^{(n-1)}). Given that the 6th term is 160 and the 9th term is 1280, we can set up two equations using these values. From the 6th term, we get (a_1 \times r^5 = 160), and from the 9th term, we get (a_1 \times r^8 = 1280). By dividing the two equations, we can eliminate (a_1) and solve for the common ratio (r).

User Avatar

ProfBot

āˆ™ 9mo ago

What else can I help you with?

Related Questions

What is the sum of the first 15 terms of an arithmetic?

For an Arithmetic Progression, Sum = 15[a + 7d].{a = first term and d = common difference} For a Geometric Progression, Sum = a[1-r^15]/(r-1).{r = common ratio }.


What is the difference between arithmetic progression and geometric progression?

In an arithmetic progression the difference between each term (except the first) and the one before is a constant. In a geometric progression, their ratio is a constant. That is, Arithmetic progression U(n) - U(n-1) = d, where d, the common difference, is a constant and n = 2, 3, 4, ... Equivalently, U(n) = U(n-1) + d = U(1) + (n-1)*d Geometric progression U(n) / U(n-1) = r, where r, the common ratio is a non-zero constant and n = 2, 3, 4, ... Equivalently, U(n) = U(n-1)*r = U(1)*r^(n-1).


How do you find the ratio in the geometric progression?

Divide any term, except the first, by the term before it.


The first and fourth terms of a geometric progression are 54 and 2 respectively Find the sum to infinity of the geometric progression?

t(1) = a = 54 t(4) = a*r^3 = 2 t(4)/t(1) = r^3 = 2/54 = 1/27 and so r = 1/3 Then sum to infinity = a/(1 - r) = 54/(1 - 1/3) = 54/(2/3) = 81.


A geometric progression has a common ratio -1/2 and the sum of its first 3 terms is 18. Find the sum to infinity?

The sum to infinity of a geometric series is given by the formula Sāˆž=a1/(1-r), where a1 is the first term in the series and r is found by dividing any term by the term immediately before it.


What is the formula for the geometric progression with the first 3 terms 4 2 1?

The nth term of the series is [ 4/2(n-1) ].


What is the difference of arithmetic progression to geometric progression?

In an arithmetic progression the difference between each term (except the first) and the one before is a constant. In a geometric progression, their ratio is a constant.That is,Arithmetic progressionU(n) - U(n-1) = d, where d, the common difference, is a constant and n = 2, 3, 4, ...Equivalently,U(n) = U(n-1) + d = U(1) + (n-1)*dGeometric progressionU(n) / U(n-1) = r, where r, the common ratio is a non-zero constant and n = 2, 3, 4, ...Equivalently,U(n) = U(n-1)*r = U(1)*r^(n-1).


What does Geometric Series represent?

A geometric series represents the partial sums of a geometric sequence. The nth term in a geometric series with first term a and common ratio r is:T(n) = a(1 - r^n)/(1 - r)


What is the 7th term in the geometric sequence whose first term is 5 and the common ratio is -2?

Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5


What is the 6th term of the geometric sequence below?

To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.


Who was the first to know about global warming?

It appears to have been Svante Arrhenius (1859-1927) in 1896, a Swedish scientist who developed what is now know as the 'greenhouse gas law':"if the quantity of carbonic acid increases in geometric progression, the augmentation of the temperature will increase nearly in arithmetic progression"


What is the 12th term of a geometric sequence in which the common ratio is 2 and the first term is 12?

36