(a-b) (a+b) = a2+b2
no, because some examples are: (a-2)(a+2) = a^2-4 (binomial) & (a+b)(c-d) = ac-ad+bc-db (polynomial) but can 2 binomials equal to a monomial?
distributive
multiply the 1st term with whole bracket and the 2nd term with whole bracket
The product is(the product of the first term of each)plus(the product of the last term of each) plus(the product of the first term of the first and the last term of the second) plus(the product of the first term of the second and the last term of the first).
First ("first" terms of each binomial are multiplied together)Outer ("outside" terms are multiplied-that is, the first term of the first binomial and the second term of the second)Inner ("inside" terms are multiplied-second term of the first binomial and first term of the second)Last ("last" terms of each binomial are multiplied)The general form is: (A+B)(C+D) = AC + AD + BC + BDWhere AC is the first, AD is the outer, BC is the inner, and BD is the last.So:(X+4)(X-5)= X^2 - 5X + 4X - 20= X^2 - 1X - 20
no please give me 5 riddles about product of 2 binomial
Binomials are algebraic expressions of the sum or difference of two terms. Some binomials can be broken down into factors. One example of this is the "difference between two squares" where the binomial a2 - b2 can be factored into (a - b)(a + b)
Two binomials whose sum is a binomial can be expressed as (a + b) and (c - b), where (a) and (c) are constants, and (b) is a common variable. When you add these two binomials, the (b) terms cancel out, resulting in the binomial (a + c). For example, if you have (3x + 2) and (5 - 2), their sum is (3x + 5), which is a binomial.
8
no, because some examples are: (a-2)(a+2) = a^2-4 (binomial) & (a+b)(c-d) = ac-ad+bc-db (polynomial) but can 2 binomials equal to a monomial?
Binomials are algebraic expressions of the sum or difference of two terms. Some binomials can be broken down into factors. One example of this is the "difference between two squares" where the binomial a2 - b2 can be factored into (a - b)(a + b)
bi- = 2 Binomials have two terms.
There are many different methods to factor polynomials in general; specifically for binomials, you can check:whether you can separate a common factor,whether the binomial is the difference of two squares,whether the binomial is the sum or difference of two cubes (or higher odd-numbered powers)
No. A counter-example proves the falsity: Consider the two binomials (x + 2) and (x - 2). Then (x + 2)(x - 2) = x2 - 2x + 2x - 4 = x2 - 4 another binomial.
They have one more than the power of the binomial.
You could start with multiplying two different binomials ("FOIL" and such), then squaring a binomial is just a special case. In both cases, you could give a geometric illustration (a square with sides a+b and c+d, and the product represented by area)
a²-b²