If y = sin x:
x can take on any value, so the domain is the set of real numbers.
y can take on values between -1 and 1 (including the extremes); so the range is -1 <= y <= 1.
If y = sin x:
x can take on any value, so the domain is the set of real numbers.
y can take on values between -1 and 1 (including the extremes); so the range is -1 <= y <= 1.
If y = sin x:
x can take on any value, so the domain is the set of real numbers.
y can take on values between -1 and 1 (including the extremes); so the range is -1 <= y <= 1.
If y = sin x:
x can take on any value, so the domain is the set of real numbers.
y can take on values between -1 and 1 (including the extremes); so the range is -1 <= y <= 1.
Domains and ranges are commonly used in fields such as mathematics, computer science, economics, physics, and engineering. In mathematics, domains and ranges help define the inputs and outputs of functions, which are essential for solving equations and analyzing data. In computer science, domains and ranges are used in programming to determine the scope and limits of variables and functions. In economics, domains and ranges help model relationships between variables in economic systems. In physics and engineering, domains and ranges are crucial for understanding the behavior of physical systems and designing solutions based on specific input-output relationships.
2
(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx
sinx cscx = 1 is the same thing as sinx(1/sinx) = 1 which is the same as sinx/sinx = 1. This evaluates to 1=1, which is true.
From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.
Domains and ranges are commonly used in fields such as mathematics, computer science, economics, physics, and engineering. In mathematics, domains and ranges help define the inputs and outputs of functions, which are essential for solving equations and analyzing data. In computer science, domains and ranges are used in programming to determine the scope and limits of variables and functions. In economics, domains and ranges help model relationships between variables in economic systems. In physics and engineering, domains and ranges are crucial for understanding the behavior of physical systems and designing solutions based on specific input-output relationships.
2
(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx
sinx cscx = 1 is the same thing as sinx(1/sinx) = 1 which is the same as sinx/sinx = 1. This evaluates to 1=1, which is true.
It's easiest to show all of the work (explanations/identities), and x represents theta. cosxcotx + sinx = cscx cosx times cosx/sinx + sinx = csc x (Quotient Identity) cosx2 /sinx + sinx = csc x (multiplied) 1-sinx2/sinx + sinx = csc x (Pythagorean Identity) 1/sinx - sinx2/sinx + sinx = csc x (seperate fraction) 1/sinx -sinx + sinx = csc x (canceled) 1/sinx = csc x (cancelled) csc x =csc x (Reciprocal Identity)
From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.
If you mean 1 - sinx = 0 then sinx = 1 (sin-1) x = 90
integration of (sinx)^1/2 is not possible.so integration of root sinx is impossible
y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx
cscx-sinx=(cosx)(cotx) 1/sinx-sinx=(cosx)(cosx/sinx) (1/sinx)-(sin^2x/sinx)=cos^2x/sinx cos^2x/sinx=cos^2x/sinx Therefore LS=RS You have to remember some trig identities when answering these questions. In this case, you need to recall that sin^2x+cos^2x=1. Also, always switch tanx cotx cscx secx in terms of sinx and cosx.
d/dx(sinx-cosx)=cosx--sinx=cosx+sinx
given the identity sin(x+y)=sinx cosy + siny cosxsin2x = 2 sinx cosx andsin(2(x)+x) = sin 2x cos x + sinx cos 2xusing the last two identities givessin3x= 2 sinx cosx cosx + sinx cos2xfactoring the sinx we havesin3x = sinx(2cosx cosx+cos2x)which satisfies the requirement.However, we can simplify further since cos 2x = cosx cosx - sinx sinx (a well known identity)sin3x = sinx (2cosx cosx +cosx cosx - sinx sinx)so sin3x= sinx(3cosx cosx - sinx sinx)or sin 3x = 3.cos²x.sinx - sin³x* * * * *Good, but not good enough. The answer was required in terms of sin, not a mixture of sinx and cosx. Easily recitified, though, since cos²x = 1 - sin²xTherefore sin3x = 3*(1-sin²x)*sinx - sin³x= 3sinx - 3sin³x - sin³x= 3sinx - 4sin³x