answersLogoWhite

0


Best Answer

integration of (sinx)^1/2 is not possible.so integration of root sinx is impossible

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Integration of root sinx
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Other Math

What is the answer to Evaluate e to the x sinx dx?

Evaluate the integral? Use integration by parts. uv - int v du u = e^x du = e^x dv = sinx v = -cosx int e^x sinx dx -e^x cosX - int -cosx e^x -e^x cosx + sinx e^x + C ----------------------------------


What is the derivative of the square root of 1-sinx?

√(1-sinx)=(1-sinx)1/2Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(1-sinx)1/2=(1/2)(1-sinx)1/2-1*d/dx(1-sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*d/dx(1-sinx)-The derivative of 1-sinx is:d/dx(u-v)=du/dx-dv/dxd/dx(1-sinx)=d/dx(1)-d/dx(sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[d/dx(1)-d/dx(sinx)]-The derivative of 1 is 0 because it is a constant.-The derivative of sinx is:d/dx(sinu)=cos(u)*d/dx(u)d/dx(sinx)=cos(x)*d/dx(x)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*d/dx(x))]-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*1)]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x))]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[-cos(x)]d/dx(1-sinx)1/2=(-cosx)/[2√(1-sinx)]


How do you solve csc x-sin x equals cos x cot x?

cscx-sinx=(cosx)(cotx) 1/sinx-sinx=(cosx)(cosx/sinx) (1/sinx)-(sin^2x/sinx)=cos^2x/sinx cos^2x/sinx=cos^2x/sinx Therefore LS=RS You have to remember some trig identities when answering these questions. In this case, you need to recall that sin^2x+cos^2x=1. Also, always switch tanx cotx cscx secx in terms of sinx and cosx.


What is the derivative of sin x minus cos x?

d/dx(sinx-cosx)=cosx--sinx=cosx+sinx


What is the derivative of sin x to the e to the xth power?

y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx

Related questions

Integration of sinx is?

-cos x + C


What is the square root of sin2x and why?

sin2x is the conventional way of writing (sinx)2; it does not denote the sine of sinx as one might expect. So the square root is just sinx.


Why did the chicken cross the road due to the resulting effects of finding the integration of sinx in respect to cos?

Yes, he is.


What is the answer to Evaluate e to the x sinx dx?

Evaluate the integral? Use integration by parts. uv - int v du u = e^x du = e^x dv = sinx v = -cosx int e^x sinx dx -e^x cosX - int -cosx e^x -e^x cosx + sinx e^x + C ----------------------------------


What is answer of integral of square root of sinx?

Rewrite as, int[sinx 1/2 ] = - (2/3)cosx 3/2 + C ==================or = - (2/3)sqrt[cosx 3] + C ==================


Prove this identity 1 plus cosx divide by sinx equals sinx divide by 1-cosx?

2


How do you solve 1 minus cosx divided by sinx plus sinx divided by 1 minus cosx to get 2cscx?

(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx


Find the exact value of the area under the first arch of fx x sinx The first arch is between x 0 and the first positive x-intercept?

First, find the upper limit of integration by setting xsin(x)=0. It should be pi. Then use integration by parts to integrate xsin(x) from 0 to pi u=x dv=sinx dx du=dx v=-cosx evaluate the -xcosx+sinx from 0 to pi the answer is pi ps webassign sucks


What is the integration of root sinx?

The integral of root(sin(x)) is -2 time the elliptic integral of the second order of .25(pi-2x) at 2. For this and other integrals, go to http://integrals.wolfram.com/index.jsp?expr=sqrt(sin(x))&random=false For more information on the elliptic integral functions, go to http://en.wikipedia.org/wiki/Elliptic_integral Hope this helps!


How do you verify the identity sinx cscx 1?

sinx cscx = 1 is the same thing as sinx(1/sinx) = 1 which is the same as sinx/sinx = 1. This evaluates to 1=1, which is true.


Verify that Cos theta cot theta plus sin theta equals csc theta?

It's easiest to show all of the work (explanations/identities), and x represents theta. cosxcotx + sinx = cscx cosx times cosx/sinx + sinx = csc x (Quotient Identity) cosx2 /sinx + sinx = csc x (multiplied) 1-sinx2/sinx + sinx = csc x (Pythagorean Identity) 1/sinx - sinx2/sinx + sinx = csc x (seperate fraction) 1/sinx -sinx + sinx = csc x (canceled) 1/sinx = csc x (cancelled) csc x =csc x (Reciprocal Identity)


What is the derivative of the square root of 1-sinx?

√(1-sinx)=(1-sinx)1/2Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(1-sinx)1/2=(1/2)(1-sinx)1/2-1*d/dx(1-sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*d/dx(1-sinx)-The derivative of 1-sinx is:d/dx(u-v)=du/dx-dv/dxd/dx(1-sinx)=d/dx(1)-d/dx(sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[d/dx(1)-d/dx(sinx)]-The derivative of 1 is 0 because it is a constant.-The derivative of sinx is:d/dx(sinu)=cos(u)*d/dx(u)d/dx(sinx)=cos(x)*d/dx(x)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*d/dx(x))]-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*1)]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x))]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[-cos(x)]d/dx(1-sinx)1/2=(-cosx)/[2√(1-sinx)]