answersLogoWhite

0


Best Answer

sinx cscx = 1 is the same thing as sinx(1/sinx) = 1 which is the same as sinx/sinx = 1. This evaluates to 1=1, which is true.

User Avatar

Wiki User

โˆ™ 2016-01-04 21:38:50
This answer is:
๐Ÿ™
0
๐Ÿคจ
0
๐Ÿ˜ฎ
0
User Avatar
Study guides

Algebra

21 cards

During the 1930s the new deal legislation was proposed by president Franklin Roosevelt to bring the US out of the great depression

What economic function does the government attempt to correct for in market failures like monopolies

Protection from foreign enemies is established in the Constitutional promise to provide for what

The sharing of ideas and experimental findings with others

โžก๏ธ
See all cards
5.0
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
1 Review
More answers
User Avatar

Wiki User

โˆ™ 2015-12-20 15:26:55

You look at the definition of cosec x.


User Avatar

Add your answer:

Earn +20 pts
Q: How do you verify the identity sinx cscx 1?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Verify that Cos theta cot theta plus sin theta equals csc theta?

It's easiest to show all of the work (explanations/identities), and x represents theta. cosxcotx + sinx = cscx cosx times cosx/sinx + sinx = csc x (Quotient Identity) cosx2 /sinx + sinx = csc x (multiplied) 1-sinx2/sinx + sinx = csc x (Pythagorean Identity) 1/sinx - sinx2/sinx + sinx = csc x (seperate fraction) 1/sinx -sinx + sinx = csc x (canceled) 1/sinx = csc x (cancelled) csc x =csc x (Reciprocal Identity)


Parenthesis 1 plus tanx end parenthesis divided by sinx equals cscx plus secx?

(1 + tanx)/sinxMultiply by sinx/sinxsinx + tanxsinxDivide by sin2x (1/sin2x) = cscxcscx + tan(x)csc(x)tanx = sinx/cosx and cscx = 1/sinxcscx + (sinx/cosx)(1/sinx)sinx cancels outcscx + 1/cosx1/cosx = secxcscx + secx


What is the derivative of 1 divided by sinx?

y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx


How do you solve csc x-sin x equals cos x cot x?

cscx-sinx=(cosx)(cotx) 1/sinx-sinx=(cosx)(cosx/sinx) (1/sinx)-(sin^2x/sinx)=cos^2x/sinx cos^2x/sinx=cos^2x/sinx Therefore LS=RS You have to remember some trig identities when answering these questions. In this case, you need to recall that sin^2x+cos^2x=1. Also, always switch tanx cotx cscx secx in terms of sinx and cosx.


Is 1 plus sinX divided by 1 plus cscX equal to sinX?

2


How do you prove that the derivative of csc x is equals to -csc x cot x?

d/dx cscx = d/dx 1/sinx = d/dx (sinx)-1= -(sinx)-2 cosx = -cosx/sin2x = -1/sinx.cosx/sinx = -cscx cotx I suggest you copy this out onto paper so it is more clear. The / signs make it harder to see what is happening compared to horizontal divide lines.


Can you Show 1 over sinx cosx - cosx over sinx equals tanx?

From the Pythagorean identity, sin2x = 1-cos2x. LHS = 1/(sinx cosx) - cosx/sinx LHS = 1/(sinx cosx) - (cosx/sinx)(cosx/cosx) LHS = 1/(sinx cosx) - cos2x/(sinx cosx) LHS = (1- cos2x)/(sinx cosx) LHS = sin2x /(sinx cosx) [from Pythagorean identity] LHS = sin2x /(sinx cosx) LHS = sinx/cosx LHS = tanx [by definition] RHS = tanx LHS = RHS and so the identity is proven. Q.E.D.


Prove this identity 1 plus cosx divide by sinx equals sinx divide by 1-cosx?

2


What is the anti derivative of the square root of 1-x2?

-1


How do you break 1 sinx divided 1-cosx?

0


How do you solve 1 minus cosx divided by sinx plus sinx divided by 1 minus cosx to get 2cscx?

(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx


What is 1- sinx?

If you mean 1 - sinx = 0 then sinx = 1 (sin-1) x = 90


What is sin 3x in terms of sin x?

given the identity sin(x+y)=sinx cosy + siny cosxsin2x = 2 sinx cosx andsin(2(x)+x) = sin 2x cos x + sinx cos 2xusing the last two identities givessin3x= 2 sinx cosx cosx + sinx cos2xfactoring the sinx we havesin3x = sinx(2cosx cosx+cos2x)which satisfies the requirement.However, we can simplify further since cos 2x = cosx cosx - sinx sinx (a well known identity)sin3x = sinx (2cosx cosx +cosx cosx - sinx sinx)so sin3x= sinx(3cosx cosx - sinx sinx)or sin 3x = 3.cos²x.sinx - sin³x* * * * *Good, but not good enough. The answer was required in terms of sin, not a mixture of sinx and cosx. Easily recitified, though, since cos²x = 1 - sin²xTherefore sin3x = 3*(1-sin²x)*sinx - sin³x= 3sinx - 3sin³x - sin³x= 3sinx - 4sin³x


What is the derivative of the square root of 1-sinx?

√(1-sinx)=(1-sinx)1/2Chain rule: d/dx(ux)=x(u)x-1*d/dx(u)d/dx(1-sinx)1/2=(1/2)(1-sinx)1/2-1*d/dx(1-sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*d/dx(1-sinx)-The derivative of 1-sinx is:d/dx(u-v)=du/dx-dv/dxd/dx(1-sinx)=d/dx(1)-d/dx(sinx)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[d/dx(1)-d/dx(sinx)]-The derivative of 1 is 0 because it is a constant.-The derivative of sinx is:d/dx(sinu)=cos(u)*d/dx(u)d/dx(sinx)=cos(x)*d/dx(x)d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*d/dx(x))]-The derivative of x is:d/dx(xn)=nxn-1d/dx(x)=1*x1-1d/dx(x)=1*x0d/dx(x)=1*(1)d/dx(x)=1d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x)*1)]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[0-(cos(x))]d/dx(1-sinx)1/2=(1/2)(1-sinx)-1/2*[-cos(x)]d/dx(1-sinx)1/2=(-cosx)/[2√(1-sinx)]


Tan plus cot divided by tan equals csc squared?

(tanx+cotx)/tanx=(tanx/tanx) + (cotx/tanx) = 1 + (cosx/sinx)/(sinx/cosx)=1 + cos2x/sin2x = 1+cot2x= csc2x This is a pythagorean identity.


How do you differentiate sine squared x?

Using the Chain Rule :derivative of (sinx)2 = 2(sinx)1 * (derivative of sinx)d/dx (Sinx)2 = 2(sinx)1 * [d/dx (Sinx)]d/dx (Sinx)2 = 2(sinx) * (cosx)d/dx (Sinx)2 = 2 (sinx) * (cosx)d/dx (Sinx)2 = 2 sin(x) * cos(x)


Integration of root sinx?

integration of (sinx)^1/2 is not possible.so integration of root sinx is impossible


How do you factor sinx-cos2x-1?

[sinx - cos2x - 1] is already factored the most it can be


Solve 2sinx-sin3x equals 0?

2sinx - sin3x = 0 2sinx - 3sinx + 4sin3x = 0 4sin3x - sinx = 0 sinx(4sin2x - 1) = 0 sinx*(2sinx - 1)(2sinx + 1) = 0 so sinx = 0 or sinx = -1/2 or sinx = 1/2 It is not possible to go any further since the domain for x is not defined.


What is the anti-derivative of 4cosx divided by sinx to the power of 2?

2


How do you express the term 1-csc squared x all over sin x cot x to cos x?

(1 - csc2x)/(sinx*cotx) = -cot2x/sinxcotx = -cotx/sinx = -(cosx/sinx)/sinx = -cosx/sin2x = -cosx/(1-cos2x) = cosx/(cos2x - 1)


How do you solve sin x - 2 sin x is equal to 0?

sinx(1-sinx)=0 sinx=0 or 1 x= 0, 90, 180, 270, 360...


What is the derivative of sin x to the e to the xth power?

y = (sinx)^(e^x) ln(y) = ln((sinx)^(e^x)) ln(y) = (e^x)ln(sinx) (1/y)dy = (e^x)(1/sinx)(cosx)+ln(sinx)(e^x)dx (1/y)dy = (e^x)(cotx)+ln(sinx)(e^x)dx dy = ((sinx)^(e^x))((cotx)(e^x)+ln(sinx)(e^x))dx dy = ((e^x)(sinx)^(e^x))(cotx+ln(sinx))dx


How do you solve 6sin x 1 plus 9sin x algebraically over the domain 0 x 2pi?

6*sinx = 1 + 9*sinx => 3*sinx = -1 => sinx = -1/3Let f(x) = sinx + 1/3then the solution to sinx = -1/3 is the zero of f(x)f'(x) = cosxUsing Newton-Raphson, the solutions are x = 3.4814 and 5.9480It would have been simpler to solve it using trigonometry, but the question specified an algebraic solution.


Limit x approaches 0 sinx divide x equals 1 evaluate limit x approaches 0 cos2x-1 divide x?

== == Cos2x - 1 = [1 - 2sin2 x] - 1 = - 2sin2 x; so [Cos2x - 1] / x = -2 [sinx] [sinx / x] As x approaches 0, sinx / x app 1 while 2 sinx app 0; hence the limit is 0.