Each hexadecimal digit represent four binary bits. Using the table... 0 = 0000 1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101 6 = 0110 7 = 0111 8 = 1000 9 = 1001 A = 1010 B = 1011 C = 1100 D = 1101 E = 1110 F = 1110 ... replace each hexadecimal digit with its correspnding binary digits. As an example, 37AB16 is 00110111101010112.
hexadecimal can express 16 bit binary in 4 place form, not 16.
16 is the 4th power of 2. So a hexadecimal number is converted to binary by replacing each hex digit by the 4-bit binary number having the same value. Conversely, in converting binary to hexadecimal, we group every 4 bits starting at the decimal (binary?) point and replace it with the equivalent hex digit. For example, the hexadecimal number 3F9 in binary is 1111111001, because 3 in binary is 11, F (decimal 15) is 1111, and 9 is 1001.
Convert each hex digit to four binary digits. If you get less than three (for example, 7 --> 111), fill it out with zeroes to the left (in this case, 0111).
To store the hexadecimal number FF, we need to convert it to binary first. FF in hexadecimal is equivalent to 1111 1111 in binary, which requires 8 bits to represent. Each hexadecimal digit corresponds to 4 bits in binary, so two hexadecimal digits (FF) require 8 bits to store.
0xc = 1100 Hexadecimal digits use exactly 4 binary digits (bits). The 0x0 to 0xf of hexadecimal map to 0000 to 1111 of binary. Thinking of the hexadecimal digits as decimal numbers, ie 0x0 to 0x9 are 0 to 9 and 0xa to 0xf are 10 to 15, helps with the conversion to binary: 0xc is 12 decimal which is 8 + 4 → 1100 in [4 bit] binary.
The answer depends on what you are converting from: binary, ternary, octal, hexadecimal ...
Assuming the original was in binary, the answer is 36.A
Okay, I'm pretty sure that 864 binary is 30 hexadecimal. - RG
Memory dump which are in binary numbers would have many numbers of 0s and 1s. working with these numbers would be very difficult. Hence two number system hexadecimal and octal number system is used because these numbers are inter convertible with binary numbers by the concept of bits.
The answer depends on what form you wish to convert binary and hex 2011 to.
The binary equivalent of the hexadecimal number EF16 is 1110111100010110.
Octal = 52746757 Binary = 101010111100110111101111
4F7B: Binary = 100111101111011 Decimal = 20347
ABCD1 = 10101011110011010001
01
Binary to hexadecimal is very easy because hexadecimal numbers are designed specifically so that each hex digit is exactly 4 bits (i.e. 16 different values). So if you had this binary number: binary: 100011011011110101000100001 You could put in commas every four places (starting on the left): binary: 100,0110,1101,1110,1010,0010,0001 Then you could write the hex values immediately below: binary: 0100,0110,1101,1110,1010,0010,0001 hex: 4 6 D E A 2 1 and the hex value would be 46DEA21.
It is CEF0.