Assuming the question refers to [sin(x)]/2 rather than sin(x/2) the answer is 1.
The amplitude is 1.
The amplitude is 4 .
5
The amplitude of a function is half the distance between the maximum and minimum values. This is the absolute value of the number in front of the trig function. for example, y=Asin(x) or y= Acos(x) the absolute value of A is the amplitude. Therefore, the amplitude of y=-2sinx is 2
The amplitude of the wave [ y = -2 sin(x) ] is 2.
y = sin(-x)Amplitude = 1Period = 2 pi
Assuming the question refers to [sin(x)]/2 rather than sin(x/2) the answer is 1.
The amplitude is 1.
The amplitude is 4 .
5
The amplitude is |-2| = 2.
The amplitude of the function [ sin(x) ] is 1 peak and 2 peak-to-peak . The amplitude of 6 times that function is 6 peak and 12 peak-to-peak.
The amplitude of a function is half the distance between the maximum and minimum values. This is the absolute value of the number in front of the trig function. for example, y=Asin(x) or y= Acos(x) the absolute value of A is the amplitude. Therefore, the amplitude of y=-2sinx is 2
1.5
2 sin(x) - 3 = 0 2 sin(x) = 3 sin(x) = 1.5 No solution. The maximum value of the sine function is 1.0 .
A*sin(x) + cos(x) = 1B*sin(x) - cos(x) = 1Add the two equations: A*sin(x) + B*sin(x) = 2(A+B)*sin(x) = 2sin(x) = 2/(A+B)x = arcsin{2/(A+B)}That is the main solution. There may be others: depending on the range for x.