(x4 - 2x3 + 2x2 + x + 4) / (x2 + x + 1)You can work this out using long division:x2 - 3x + 4___________________________x2 + x + 1 ) x4 - 2x3 + 2x2 + x + 4x4 + x3 + x2-3x3 + x2 + x-3x3 - 3x2 - 3x4x2 + 4x + 44x2 + 4x + 40R∴ x4 - 2x3 + 2x2 + x + 4 = (x2 + x + 1)(x2 - 3x + 4)
The answer to x4+x3-14x2+4x+6 divided by x-3 is x3+4x2-2x-2
I assume you meant x^4 + 5x^2 +10x + 12. The remainder is 28
(x4 + y4)/(x + y) = Quotient = x3 - x2y + xy2 - y3 Remainder = - 2y4/(x+y) So, x3 - x2y + xy2 - y3 - 2y4/(x+y)
13/x+4=
(x4 - 2x3 + 2x2 + x + 4) / (x2 + x + 1)You can work this out using long division:x2 - 3x + 4___________________________x2 + x + 1 ) x4 - 2x3 + 2x2 + x + 4x4 + x3 + x2-3x3 + x2 + x-3x3 - 3x2 - 3x4x2 + 4x + 44x2 + 4x + 40R∴ x4 - 2x3 + 2x2 + x + 4 = (x2 + x + 1)(x2 - 3x + 4)
The answer to x4+x3-14x2+4x+6 divided by x-3 is x3+4x2-2x-2
x4 - 4x3 - 12x2 -32x + 64 (x - 4)(x + 2)(x + 2)(x - 4)
(x - 1)(x - 4)(x + 1)(x + 4)
x^4-x^3+x
x4 +x2 =x2 (x2+1)
I assume you meant x^4 + 5x^2 +10x + 12. The remainder is 28
(x4 + y4)/(x + y) = Quotient = x3 - x2y + xy2 - y3 Remainder = - 2y4/(x+y) So, x3 - x2y + xy2 - y3 - 2y4/(x+y)
13/x+4=
144
If x = 4 and y = 2 then 4(5+2) = 28
(x - 3)(x + 1)(x + 2)(x + 4)