answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

BeauBeau
You're doing better than you think!
Chat with Beau
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor

Add your answer:

Earn +20 pts
Q: How many different 5 cards hands would contain exactly one ace?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

How many 7 card hands are possible with a 13 cards deck?

If the cards are all different then there are 13C7 = 1716 different hands.


The probability of being dealt 4 aces in a 5 card poker hand?

Poker hands are combinations of cards (when the order does not matter, but each object can be chosen only once.)The number 52C5 of combinations of 52 cards taken 5 at a time is (52x51x50x49x48) / (5x4x3x2x1) = 2,598,960.The number of hands which contain 4 aces is 48 (the fifth card can be any of 48 other cards.)So there is 1 chance in (2,598,960 / 48) = 54,145 of being dealt 4 aces in a 5 card hand.The odds are 54,144 to 1 against. The probabilityis 1/54145 = (approx.) 0.000018469 or 0.0018469%.


How many different 13-card bridge hands can be selected from an ordinary deck?

This is a combinations question. There are (52 C 13) possible hands. This is 52!/((13!)((52-13)!)) = 635013559600


What is the probability that a hand of 13 cards contains no pairs?

Well the short answer is that your chances are pretty slim. The long answer: The total number of 13-card hands is 52-choose-13, which equals 52! / (13! * 39!). Any hand without any pairs must have exactly one of each value from 2 to ace. All there is to choose is the suit of each card, for 413 possible pairless 13-card hands. The probability of choosing one of these hands is the quotient of these two numbers, or 413 * 13! * 39! / 52!, which equals 4194304/39688347475, approximately 0.00010568 or 1 in 9462. Another explanation: Say the first card in your hand is an ace. For the second card, you have to avoid the other three aces in the deck. There are 51 cards, and 48 of them are OK, so the probability that the second card doesn't pair the first card is 48/51. Suppose your second card was a king. For the third card, you now have to avoid all remaining aces and kings. There are 50 cards left in the deck and you have to dodge six of them. So the probability that the third card doesn't pair either of the first two cards is 44/50. Each time you pick a card, there are three more cards you have to avoid, and one fewer card in the deck. So for the 4th card, you have to avoid 9 cards out of 49, giving a probability of 40/49. This continues until the 13th card, when the probability is 4/40. All these things have to happen one after the other, so you have to multiply the probabilities together: 48/51 x 44/50 x 40/49 x 36/48 x 32/47 x 28/46 x 24/45 x 20/44 x 16/43 x 12/42 x 8/41 x 4/40. This gives the same probability as above (about 1 in 9462).


What does it mean when you have large hands?

That means your hands are not small, but large. You're welcome.