good question.
Chat with our AI personalities
When you use linear regression to model the data, there will typically be some amount of error between the predicted value as calculated from your model, and each data point. These differences are called "residuals". If those residuals appear to be essentially random noise (i.e. they resemble a normal (a.k.a. "Gaussian") distribution), then that offers support that your linear model is a good one for the data. However, if your errors are not normally distributed, then they are likely correlated in some way which indicates that your model is not adequately taking into consideration some factor in your data. It could mean that your data is non-linear and that linear regression is not the appropriate modeling technique.
No.
Provided that the correct model is used, the theoretical probability is correct. The experimental probability tends towards the theoretical value as the number of trials increases.Provided that the correct model is used, the theoretical probability is correct. The experimental probability tends towards the theoretical value as the number of trials increases.Provided that the correct model is used, the theoretical probability is correct. The experimental probability tends towards the theoretical value as the number of trials increases.Provided that the correct model is used, the theoretical probability is correct. The experimental probability tends towards the theoretical value as the number of trials increases.
ou
You improve your model through a better understanding of the underlying processes. Although more trials will improve the accuracy of experimental probability they will make no difference to the theoretical probability.